Database Query Results : Lycopene, , TumCCA

Lyco, Lycopene: Click to Expand ⟱
Features:
Lycopene is a naturally occurring carotenoid found predominantly in tomatoes and other red fruits and vegetables.

Antioxidant Properties:
-Lycopene is a powerful antioxidant. It helps neutralize free radicals, which can reduce oxidative stress—a factor implicated in cancer development. Possible concern about interfering with chemotherapy and radiation therapy. However this review disagrees.
Inflammation Reduction:
-Some studies suggest that lycopene may help lower levels of inflammation, another process linked to cancer progression

At supraphysiological or extremely high concentrations, lycopene may have the potential to switch from an antioxidant to a prooxidant role
-The prooxidant effect of lycopene has been observed under conditions of high oxygen tension. In vitro studies have suggested that in environments with elevated oxygen levels, lycopene might promote rather than neutralize the production of reactive oxygen species (ROS).
-The presence of metal ions (such as iron or copper) in the environment can catalyze reactions where antioxidants, including lycopene, contribute to oxidative processes. These metals can interact with lycopene, potentially leading to the formation of radicals.

The mevalonate pathway produces cholesterol and a variety of isoprenoids, which are important for maintaining cell membrane integrity, protein prenylation, and other essential cellular functions.
-One of the primary enzymes in this pathway is HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase), which is the target of statin drugs used for lowering cholesterol. Some studies suggest that lycopene might downregulate the activity of HMG-CoA reductase or other enzymes in the mevalonate pathway. By doing so, lycopene could potentially reduce the synthesis of cholesterol and isoprenoids that are necessary for rapid cell proliferation—an especially relevant aspect in cancer cells.

Lycopene typically used in a 100mg/day range for cancer (inhibition of the the Melavonate Pathway)
-also has antiplatelet aggregation capability.

-Note half-life 16–20 days.
BioAv Heat processing, especially when combined with a small amount of fat, significantly enhances lycopene’s bioaccessibility and absorption. (20% under optimal conditions)
Pathways:
- ROS usually goes down, but may go up or down depending on dose and environment. Lycopene may also be modified to be a "oxdiative product" which may change the behaviour.
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : EMT↓, MMPs↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : EZH2↓, P53↑, Sp proteins↓,
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
4780- Lyco,    Potential inhibitory effect of lycopene on prostate cancer
- Review, Pca, NA
TumCP↓, Lycopene suppress the progression and proliferation
TumCCA↑, Lycopene has been found to effectively suppress the progression and proliferation, arrest in-cell cycle, and induce apoptosis of prostate cancer cells in both in-vivo and in-vitro conditions.
Apoptosis↑,
*neuroP↑, the neuro-protective effect of lycopene, mediates the signaling pathways, by inhibiting NF-κB (nuclear factor-κB) and JNK protein (c-Jun N-terminal kinase), and activating Nrf2 (Nuclear factor erythroid 2-related factor 2) and BDNF (
*NF-kB↓,
*JNK↓,
*NRF2↑,
*BDNF↑,
*Ca+2↝, as well as keeping homeostasis by restoring intracellular Ca2+
*antiOx↑, most powerful and natural antioxidants, and its role in preventing prostate cancer.
*AntiCan↑,
*Inflam↓, Anti-inflammatory properties of lycopene depends on time, and it has been found to be through the decrease of inflammatory cytokines (i.e. IL1, IL6, IL8 and tumor necrosis factor-α (TNF-α)
*IL1↓,
*IL6↓,
*IL8↓,
*TNF-α↓,
NF-kB↓, lycopene increased the expression of BCO2 enzyme in an androgen-sensitive cell line that prevented cancer cell proliferation and reduced the NF-κB activity
DNAdam↓, 20 and 50 μM doses of lycopene had an effect on PC3 and DU145 cell lines in inducing apoptosis with DNA damages, and preventing cell growth and colony formation
PSA↓, lycopene twice a day for 3 weeks, showed that lycopene decreases the risk and growth of prostate cancer cells, and also a decrease in the level of PSA,
P53↓, down-regulation of p53, Cyclin-D1, and Nrf-2 have occurred after the incubation of prostate cancer cells with the lycopene received patient’s sera in comparison with placebo
cycD1↓,
NRF2↓,
Akt2↓, treatment with lycopene in PC3 cancer cell lines was associated with down-regulation of AKT2 [
PPARγ↓, Another anti-proliferative effect of lycopene was done by increasing PPARγ-LXRα-ABCA1signaling molecules in protein and mRNA level

4778- Lyco,    Lycopene exerts cytotoxic effects by mitochondrial reactive oxygen species–induced apoptosis in glioblastoma multiforme
- in-vitro, GBM, GBM8401
BBB↑, lycopene penetration across the blood-brain barrier and its induction of apoptosis, inhibiting proliferation in GBM8401 and T98G GBM cells
Apoptosis↑,
TumCP↑,
P53↑, lycopene promoted p53 upregulation and suppressed cyclins B and cyclin D, leading to cell cycle arrest through ROS-activated ERK pathways.
CycB↓,
cycD1↓,
TumCCA↓,
mt-ROS↑, Lycopene induced Mito-ROS accumulation in GBM cells
TumCG↓, Lycopene inhibits the cell growth of GBM cells

4794- Lyco,    Anticancer Effect of Lycopene in Gastric Carcinogenesis
- Review, GC, NA
*AntiCan↑, Lycopene from red fruits and vegetables has strong anticancer activity in gastric carcinogenesis.
*ROS↓, As one of the most potent antioxidants, lycopene is effective in decreasing oxidative damage by activating antioxidant enzymes such as GSH, GPx and GST.
*GSH↑,
*GPx↑,
*GSTs↑,
TumCG↓, Lycopene treatment inhibits cancer cell growth and induces apoptosis by suppressing ERK signaling pathway.
Apoptosis↑,
ERK↓,
Bcl-2↓, Lycopene decreases Bcl-2 and increases Bax expression, which induce release of cytochrome C from mitochondria, leading to apoptosis.
BAX↑,
Cyt‑c↑,
TumCCA↑, Lycopene treatment inhibits gastric cancer cell proliferation by increasing cell cycle arrest in G0–G1 phase
*DNAdam↓, Lycopene inhibits H. pylori-induced increases in ROS levels and DNA damage in gastric epithelial cells

4799- Lyco,    Anticancer Properties of Lycopene
- Review, Var, NA
Risk↓, Dietary lycopene supplementation may reduce the risk of cancers of many organs such as prostate and at the same time retard the growth of tumors.
TumCG↓,
*antiOx↑, main protection properties of lycopene against cancer include antioxidant, anti-inflammatory, anti-inhibitory of cancer cell proliferation
*Inflam↓,
TumCP↓,
TumCCA↑, , and cell cycle progression

4797- Lyco,    A mechanistic updated overview on lycopene as potential anticancer agent
- Review, Var, NA
AntiCan↑, The anticancer potential of lycopene has been described by various in vitro cells, animal studies, and some clinical trials.
antiOx↓, anticancer potential of lycopene is mainly due to its powerful singlet-oxygen quencher characteristics, simulation of detoxifying/antioxidant enzymes production,
Apoptosis↓, initiation of apoptosis, inhibition of cell proliferation and cell cycle progression as well as modulations of gap junctional communication, the growth factors, and signal transduction pathways
TumCP↓,
TumCCA↑,
Risk↓, The link between increased lycopene consumption and reducedoccurrence of a variety of cancers has been documented by in vitro cells,animal studies, and some clinical studies.
ROS↓, The antioxidant action of lycopene toward ROS
SOD↑, Lycopene can simulate detoxifying/antioxidant enzyme productionsuch as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione reductase.
Catalase↑, . By stimulating ARE system, the lycopene can increase detoxifying/antioxidant enzymes production such as SOD, CAT, GST
GSTs↑,
ARE↑, The upregulating of the ARE system by lycopere has been studied in human BEAS-2B, HepG2, and MCF7
NRF2↑, figure 1
cycD1↓, figure 2
cycE↑,
CDK2↑,
p27↑,
BAX↑,
Bcl-2↓,
P53↑,
ChemoSen↑, Lycopene has also been declared to have a synergistic effect with drugs used in cancer treatment [16,17,27,32]. Lycopene may contribute to improved anticancer effects of enzalutamide

4795- Lyco,    Updates on the Anticancer Profile of Lycopene and its Probable Mechanism against Breast and Gynecological Cancer
- Review, BC, NA
TumCG↓, Experimental studies suggest that lycopene can inhibit tumor growth by regulating various signaling pathways for cell growth, arresting the cell cycle, and inducing cell apoptosis.
TumCCA↑,
Apoptosis↑,
P53↝, Lycopene is reported to combat breast cancer specifically via mechanisms, such as regulation of expression of p53 and Bax, suppression of cyclin D
BAX↝,
cycD1↓,
ERK↓, inhibiting the activation of ERK and Akt signaling pathway,
Akt↓,
STAT3↓, and gynecological cancer via various signaling pathways such as STAT3, Nrf2, and NF-κB, down-regulation of ITGB1, ITGA5, FAK, MMP9, and EMT markers, etc.
NRF2↝,
NF-kB↓,
ITGB1↓,
ITGA5↓,
FAK↓,
MMP9↓,
EMT↓,

4783- Lyco,    Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells
- in-vitro, GC, AGS - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
TumCG↓, Lycopene specifically suppressed cell growth monitored by Real-Time Cell Analyzer, induced cell cycle arrest and cell apoptosis detected by flow cytometry, and lowered mitochondrial membrane potentials assessed by JC-1 staining of AGS and SGC-7901 ce
TumCCA↑,
Apoptosis↑,
MMP↓,
selectivity↑, while did not affect those of GES-1 cells.
cycE1↓, Lycopene decreased the high expression levels of CCNE1 and increased the levels of TP53 in AGS and SGC-7901 cells without affecting those in GES-1 cells.
TP53↑,
*antiOx↑, Lycopene has a strong antioxidant property without pro-Vitamin A function

4791- Lyco,    Investigating into anti-cancer potential of lycopene: Molecular targets
- Review, Var, NA
*antiOx↑, Lycopene, the main pigment of tomatoes, possess the strongest antioxidant activity among carotenoids. Lycopene has unique structure and chemical properties.
TumCP↓, the anticancer of lycopene is also considered to be an important determinant of tumor development including the inhibition of cell proliferation, inhibition of cell cycle progression, induction of apoptosis, inhibition of cell invasion, angiogenesis
TumCCA↓,
Apoptosis↑,
TumCI↓,
angioG↓,
TumMeta↓,
*Risk↓, and may be associated with a decreased risk of different types of cancer.
cycD1↓, Several studies suggested lycopene decreased cell cycle related proteins, such as cyclin D1, D3 and E, the cyclin-dependent kinases 2 and 4, bcl-2, while decreased phospho-Akt levels and increased p21, p27, p53 and bax levels and in Bax: Bcl-2 ratio
CycD3↓,
cycE↓,
CDK2↓,
CDK4↓,
Bcl-2↓,
P21↑,
p27↑,
P53↑,
BAX↑,
selectivity↑, lycopene selectively inhibited cell growth in MCF-7 human breast cancer cells but not in the MCF-10 mammary epithelial cells
MMP↓, When treating LNCaP human prostate cancer cells with lycopene, the decreased mitochondrial function could be observed.
Cyt‑c↑, release of mitochondrial cytochrome c and finally led to apoptosis
Wnt↓, Lycopene could inhibit Wnt-TCF signaling pathway in cancer cells.
eff↑, Lycopene could synergistically increase QC anticancer activity and inhibit Wnt-TCF signaling in cancer cells.
PPARγ↑, Lycopene could inhibit the growth of cancer cells by activating the PPARγ – LXRα - ABCA1 pathway and decreasing cellular total cholesterol levels
LDL↓,
Akt↓, Lycopene suppressed Akt activation and non-phosphorylated β-Catenin,
PI3K↓, inhibited the proliferation of colon cancer HT-29 cells, which was associated with suppressing PI3K/Akt/mTOR signaling pathway
mTOR↓,
PDGF↓, Lycopene, however, could inhibit PDGF-BB-induced signaling and cell migration in both human cultured skin fibroblasts and melanoma-derived fibroblasts
NF-kB↓, anticancer properties of lycopene may occur to play its role through the inhibition of the NF-κB signaling pathway
eff↑, lycopene increased the sensitization of cervical cancer cells to cisplatin via the suppression of NF-κB-mediated inflammatory responses, and the modulation of Nrf2-mediated oxidative stress

4786- Lyco,    Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3
TumCP↓, dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma.
TumCCA↑,
cl‑PARP↑, demonstrable cleavage of PARP.
ERK↑, Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines
cycD1↓,
P21↓,
p‑Akt↓, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax
mTOR↓,
BAX↑,
AntiCan↑, data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells
Risk↓, Lycopene has been shown to reduce the risk of overall breast cancer more prominently than other carotenoids

1708- Lyco,    The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies
- Review, Var, NA
OS↑, reduced prostate cancer-specific mortality in men at high risk for prostate cancer
ChemoSen↑, improved the response to docetaxel chemotherapy in advanced castrate-resistant prostate cancer
QoL↑, lycopene improved the quality of life, and provided relief from bone pain and control of lower urinary tract symptoms
PSA∅, PSA stabilisation in prostate cancer
eff↑, Lycopene co-supplementation with vitamin E also showed an improvement in the results of prostate cancer treatment
AntiCan↑, lycopene intake showed a strong protective effect against stomach cancer, regardless of H. pylori status
AntiCan↑, A lycopene-rich diet was shown to reduce the incidence of pancreatic cancer in humans by 31%
angioG↓,
VEGF↓,
Hif1a↓,
SOD↑,
Catalase↑,
GPx↑,
GSH↑,
GPx↑,
GR↑,
MDA↓,
NRF2↑,
HO-1↑,
COX2↓,
PGE2↓,
NF-kB↓,
IL4↑,
IL10↑,
IL6↓,
TNF-α↓,
PPARγ↑,
TumCCA↑, G(0)/G(1) phase
FOXO3↓,
Casp3↑,
IGF-1↓, breast cancer,crc
p27↑,
STAT3↓,
CDK2↓,
CDK4↓,
P21↑,
PCNA↓,
MMP7↓,
MMP9↓,

3275- Lyco,    Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer
- Review, Var, NA
TumCCA↑, lycopene impedes the progress of the cell cycle from the G1 to the S phase, primarily by diminishing the cyclin D and cyclin E levels.
cycD1↓,
cycE↓,
CDK2↓, causes a subsequent inactivation of CDK4 and CDK2 through a reduced phosphorylation of Rb
CDK4↓,
P21↑, lycopene elevates CDK inhibitor, p21, and p53 (tumor suppressor) levels
P53↑,
GSK‐3β↓, Finally, GSK3β, p21, p27, Bad, caspase 9, and p53 (via Mdm2) are inactivated
p27↓,
Akt↓, lycopene inhibits AKT (protein kinase B) and mTOR
mTOR↓,
ROS↓, ability of lycopene to minimize ROS formation and mitigate oxidative stress
MMPs↓, lycopene may decrease the activity of metalloproteinases of the matrix and prevent SK-Hep1 cellular adhesion, invasion, and migration
TumCI↓,
TumCMig↓,
NF-kB↓, well-documented that lycopene inhibits NF-kB binding activity
*iNOS↓, They also claimed that the lycopene caused a decline in the LPS-induced protein and mRNA expression of iNOS,
*COX2↓, Lycopene can therefore decrease the gene expression of iNOS and COX-2 as a non-toxic agent via controlling pro-inflammatory genes
lipid-P↓, suppress gastric cancer by multimodal mechanisms of reduction in lipid peroxidation, elevation in the levels of antioxidants, and enhanced GSH
GSH↑,
NRF2↑, Reportedly, lycopene is known to “upregulate” this ARE system via Nrf2 in vitro (HepG2 and MCF-7 cells)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 11

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   p‑Akt↓,1,   Akt2↓,1,   angioG↓,2,   AntiCan↑,4,   antiOx↓,1,   Apoptosis↓,1,   Apoptosis↑,6,   ARE↑,1,   BAX↑,4,   BAX↝,1,   BBB↑,1,   Bcl-2↓,3,   Casp3↑,1,   Catalase↑,2,   CDK2↓,3,   CDK2↑,1,   CDK4↓,3,   ChemoSen↑,2,   COX2↓,1,   CycB↓,1,   cycD1↓,7,   CycD3↓,1,   cycE↓,2,   cycE↑,1,   cycE1↓,1,   Cyt‑c↑,2,   DNAdam↓,1,   eff↑,3,   EMT↓,1,   ERK↓,2,   ERK↑,1,   FAK↓,1,   FOXO3↓,1,   GPx↑,2,   GR↑,1,   GSH↑,2,   GSK‐3β↓,1,   GSTs↑,1,   Hif1a↓,1,   HO-1↑,1,   IGF-1↓,1,   IL10↑,1,   IL4↑,1,   IL6↓,1,   ITGA5↓,1,   ITGB1↓,1,   LDL↓,1,   lipid-P↓,1,   MDA↓,1,   MMP↓,2,   MMP7↓,1,   MMP9↓,2,   MMPs↓,1,   mTOR↓,3,   NF-kB↓,5,   NRF2↓,1,   NRF2↑,3,   NRF2↝,1,   OS↑,1,   P21↓,1,   P21↑,3,   p27↓,1,   p27↑,3,   P53↓,1,   P53↑,4,   P53↝,1,   cl‑PARP↑,1,   PCNA↓,1,   PDGF↓,1,   PGE2↓,1,   PI3K↓,1,   PPARγ↓,1,   PPARγ↑,2,   PSA↓,1,   PSA∅,1,   QoL↑,1,   Risk↓,3,   ROS↓,2,   mt-ROS↑,1,   selectivity↑,2,   SOD↑,2,   STAT3↓,2,   TNF-α↓,1,   TP53↑,1,   TumCCA↓,2,   TumCCA↑,9,   TumCG↓,5,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,5,   TumCP↑,1,   TumMeta↓,1,   VEGF↓,1,   Wnt↓,1,  
Total Targets: 95

Results for Effect on Normal Cells:
AntiCan↑,2,   antiOx↑,4,   BDNF↑,1,   Ca+2↝,1,   COX2↓,1,   DNAdam↓,1,   GPx↑,1,   GSH↑,1,   GSTs↑,1,   IL1↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,2,   iNOS↓,1,   JNK↓,1,   neuroP↑,1,   NF-kB↓,1,   NRF2↑,1,   Risk↓,1,   ROS↓,1,   TNF-α↓,1,  
Total Targets: 21

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
11 Lycopene
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:119  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page