condition found tbRes List
Lyco, Lycopene: Click to Expand ⟱
Features:
Lycopene is a naturally occurring carotenoid found predominantly in tomatoes and other red fruits and vegetables.

Antioxidant Properties:
-Lycopene is a powerful antioxidant. It helps neutralize free radicals, which can reduce oxidative stress—a factor implicated in cancer development. Possible concern about interfering with chemotherapy and radiation therapy. However this review disagrees.
Inflammation Reduction:
-Some studies suggest that lycopene may help lower levels of inflammation, another process linked to cancer progression

At supraphysiological or extremely high concentrations, lycopene may have the potential to switch from an antioxidant to a prooxidant role
-The prooxidant effect of lycopene has been observed under conditions of high oxygen tension. In vitro studies have suggested that in environments with elevated oxygen levels, lycopene might promote rather than neutralize the production of reactive oxygen species (ROS).
-The presence of metal ions (such as iron or copper) in the environment can catalyze reactions where antioxidants, including lycopene, contribute to oxidative processes. These metals can interact with lycopene, potentially leading to the formation of radicals.

The mevalonate pathway produces cholesterol and a variety of isoprenoids, which are important for maintaining cell membrane integrity, protein prenylation, and other essential cellular functions.
-One of the primary enzymes in this pathway is HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase), which is the target of statin drugs used for lowering cholesterol. Some studies suggest that lycopene might downregulate the activity of HMG-CoA reductase or other enzymes in the mevalonate pathway. By doing so, lycopene could potentially reduce the synthesis of cholesterol and isoprenoids that are necessary for rapid cell proliferation—an especially relevant aspect in cancer cells.

Lycopene typically used in a 100mg/day range for cancer (inhibition of the the Melavonate Pathway)
-also has antiplatelet aggregation capability.

-Note half-life 16–20 days.
BioAv Heat processing, especially when combined with a small amount of fat, significantly enhances lycopene’s bioaccessibility and absorption. (20% under optimal conditions)
Pathways:
- ROS usually goes down, but may go up or down depending on dose and environment
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : EMT↓, MMPs↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : EZH2↓, P53↑, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


angioG, angiogenesis: Click to Expand ⟱
Source:
Type:
Process through which new blood vessels.
Angiogenesis, the process of new blood vessel formation from pre-existing vessels, plays a crucial role in cancer progression and metastasis. Tumors require a blood supply to grow beyond a certain size and to spread to other parts of the body.
Vascular Endothelial Growth Factor (VEGF): VEGF is one of the most important pro-angiogenic factors. It stimulates endothelial cell proliferation and migration, leading to the formation of new blood vessels. Many tumors overexpress VEGF, which correlates with poor prognosis.
Hypoxia-Inducible Factor (HIF): In response to low oxygen levels (hypoxia), tumors can activate HIF, which in turn promotes the expression of VEGF and other angiogenic factors. This mechanism allows tumors to adapt to their microenvironment and sustain growth.


Scientific Papers found: Click to Expand⟱
3267- Lyco,    Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways
- in-vitro, Nor, HUVECs
*VEGF↓, highest dose used (400 μg/plug) completely inhibited the formation of vascular endothelial cells induced by vascular endothelial growth factor (VEGF).
*MMP2↓, lycopene inhibited tube formation, invasion, and migration in HUVECs, and such actions were accompanied by reduced activities of matrix metalloproteinase-2, urokinase-type plasminogen activator, and protein expression of Rac1
*uPA↓,
*Rac1↑,
*TIMP2↑, and by enhancing protein expression of tissue inhibitors of metalloproteinase-2 and plasminogen activator inhibitor-1.
*p38↓, lycopene attenuated VEGF receptor-2 (VEGFR2)-mediated phosphorylation of extracellular signal-regulated kinase (ERK), p38, and Akt as well as protein expression of PI3K.
*Akt↓,
*angioG↓, anti-angiogenic effect of lycopene both in vitro and in vivo.

1708- Lyco,    The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies
- Review, Var, NA
OS↑, reduced prostate cancer-specific mortality in men at high risk for prostate cancer
ChemoSen↑, improved the response to docetaxel chemotherapy in advanced castrate-resistant prostate cancer
QoL↑, lycopene improved the quality of life, and provided relief from bone pain and control of lower urinary tract symptoms
PSA∅, PSA stabilisation in prostate cancer
eff↑, Lycopene co-supplementation with vitamin E also showed an improvement in the results of prostate cancer treatment
AntiCan↑, lycopene intake showed a strong protective effect against stomach cancer, regardless of H. pylori status
AntiCan↑, A lycopene-rich diet was shown to reduce the incidence of pancreatic cancer in humans by 31%
angioG↓,
VEGF↓,
Hif1a↓,
SOD↑,
Catalase↑,
GPx↑,
GSH↑,
GPx↑,
GR↑,
MDA↓,
NRF2↑,
HO-1↑,
COX2↓,
PGE2↓,
NF-kB↓,
IL4↑,
IL10↑,
IL6↓,
TNF-α↓,
PPARγ↑,
TumCCA↑, G(0)/G(1) phase
FOXO3↓,
Casp3↑,
IGF-1↓, breast cancer,crc
p27↑,
STAT3↓,
CDK2↓,
CDK4↓,
P21↑,
PCNA↓,
MMP7↓,
MMP9↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   AntiCan↑,2,   Casp3↑,1,   Catalase↑,1,   CDK2↓,1,   CDK4↓,1,   ChemoSen↑,1,   COX2↓,1,   eff↑,1,   FOXO3↓,1,   GPx↑,2,   GR↑,1,   GSH↑,1,   Hif1a↓,1,   HO-1↑,1,   IGF-1↓,1,   IL10↑,1,   IL4↑,1,   IL6↓,1,   MDA↓,1,   MMP7↓,1,   MMP9↓,1,   NF-kB↓,1,   NRF2↑,1,   OS↑,1,   P21↑,1,   p27↑,1,   PCNA↓,1,   PGE2↓,1,   PPARγ↑,1,   PSA∅,1,   QoL↑,1,   SOD↑,1,   STAT3↓,1,   TNF-α↓,1,   TumCCA↑,1,   VEGF↓,1,  
Total Targets: 37

Results for Effect on Normal Cells:
Akt↓,1,   angioG↓,1,   MMP2↓,1,   p38↓,1,   Rac1↑,1,   TIMP2↑,1,   uPA↓,1,   VEGF↓,1,  
Total Targets: 8

Scientific Paper Hit Count for: angioG, angiogenesis
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:119  Target#:447  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page