condition found
Features: |
Lycopene is a naturally occurring carotenoid found predominantly in tomatoes and other red fruits and vegetables. Antioxidant Properties: -Lycopene is a powerful antioxidant. It helps neutralize free radicals, which can reduce oxidative stress—a factor implicated in cancer development. Possible concern about interfering with chemotherapy and radiation therapy. However this review disagrees. Inflammation Reduction: -Some studies suggest that lycopene may help lower levels of inflammation, another process linked to cancer progression At supraphysiological or extremely high concentrations, lycopene may have the potential to switch from an antioxidant to a prooxidant role -The prooxidant effect of lycopene has been observed under conditions of high oxygen tension. In vitro studies have suggested that in environments with elevated oxygen levels, lycopene might promote rather than neutralize the production of reactive oxygen species (ROS). -The presence of metal ions (such as iron or copper) in the environment can catalyze reactions where antioxidants, including lycopene, contribute to oxidative processes. These metals can interact with lycopene, potentially leading to the formation of radicals. The mevalonate pathway produces cholesterol and a variety of isoprenoids, which are important for maintaining cell membrane integrity, protein prenylation, and other essential cellular functions. -One of the primary enzymes in this pathway is HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase), which is the target of statin drugs used for lowering cholesterol. Some studies suggest that lycopene might downregulate the activity of HMG-CoA reductase or other enzymes in the mevalonate pathway. By doing so, lycopene could potentially reduce the synthesis of cholesterol and isoprenoids that are necessary for rapid cell proliferation—an especially relevant aspect in cancer cells. Lycopene typically used in a 100mg/day range for cancer (inhibition of the the Melavonate Pathway) -also has antiplatelet aggregation capability. -Note half-life 16–20 days. BioAv Heat processing, especially when combined with a small amount of fat, significantly enhances lycopene’s bioaccessibility and absorption. (20% under optimal conditions) Pathways: - ROS usually goes down, but may go up or down depending on dose and environment - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : EMT↓, MMPs↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : EZH2↓, P53↑, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms: 1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion. 2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue. 3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment. 4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream. 5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body. 6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection. 7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs. 8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis. |
3275- | Lyco,  |   | Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer |
- | Review, | Var, | NA |
1126- | Lyco,  |   | Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway |
- | vitro+vivo, | Oral, | NA |
3262- | Lyco,  |   | Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1 |
- | in-vitro, | adrenal, | SK-HEP-1 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:119 Target#:324 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid