condition found tbRes List
SK, Shikonin: Click to Expand ⟱
Features:
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin.
Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon).
Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao'
-Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties
-Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin
-ic50 cancer cells 1-10uM, normal cells >10uM

-known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway)

Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg
Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin)

-Note half-life15-30mins or 8hr?.
BioAv low, poor water solubility
Pathways:
- usually induce ROS production in cancer cells, and reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
2227- SK,    Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
selectivity↑, In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells.
TumCP↓,
TumCD↑,
ROS↑, SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis.
MMP↓,
Casp↑, SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade
Cyt‑c↑,
Endon↑, nuclear translocation of AIF and Endonuclease G
AIF↑,
eff↓, NAC and GSH significantly inhibited SHK-induced death
ChemoSen↑, SHK enhances chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin
TumCCA↑, SHK caused S-phase cell cycle arrest in SGC-7901 and BGC-823 gastric cancer cells
GSH/GSSG↓, We found that the GSH/GSSG ratio was significantly decreased when treated with SHK.
lipid-P↑, SHK increases lipid peroxidation and induces apoptosis in vivo

2418- SK,    Experimental Study of Hepatocellular Carcinoma Treatment by Shikonin Through Regulating PKM2
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
tumCV↓, The results of CCK-8 showed that shikonin significantly inhibited cell viability of HCC cells.
GlucoseCon↓, The levels of glucose uptake and lactate production were dramatically decreased by shikonin-treated.
lactateProd↓,
ChemoSen↑, shikonin enhanced the anti-cancer effect of sorafenib in vitro and in vivo.
PKM2↓, By inhibiting PKM2, shikonin inhibited proliferation and glycolysis and induced cell apoptosis in HCC cells.
Glycolysis↓,

2184- SK,  Cisplatin,    PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis
- in-vitro, CRC, T24
PKM2↓, Down-regulation of PKM2 by siRNA or inhibition of PKM2 by shikonin re-sensitized the cisplatin resistant T24 cells.
ChemoSen↑,
Necroptosis↑, shikonin kills the T24 cisplatin resistant cells by inducing necroptosis

2182- SK,  Cisplatin,    Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway
- in-vitro, Lung, A549 - in-vitro, Lung, PC9 - in-vivo, NA, NA
tumCV↓, shikonin inhibited the viability, proliferation, invasion, and migration of NSCLC cells A549 and PC9, and induced apoptosis.
TumCP↓,
TumCI↓,
TumCMig↓,
Apoptosis↑,
PKM2↓, As the inhibitor of pyruvate kinase M2 (PKM2), a key enzyme in glycolysis, shikonin inhibited glucose uptake and the production of lactate
Glycolysis↓,
GlucoseCon↓,
lactateProd↓,
ChemoSen↑, In vivo chemotherapeutic assay showed that shikonin reduced the tumor volume and weight in NSCLC mice model and increased the sensitivity to cisplatin chemotherapy.
TumVol↓,
TumW↓,
GLUT1↓, combination of shikonin and cisplatin downregulated the expression of PKM2 and its transcriptionally regulated downstream gene glucose transporter 1 (Glut1) in tumor tissue

2008- SK,  Cisplatin,    Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
ChemoSen↑, combination of shikonin and cisplatin exhibited synergistic anticancer efficacy
selectivity↑, and achieved greater selectivity between cancer cells and normal cells.
i-ROS↑, By inducing intracellular oxidative stress, shikonin potentiated cisplatin-induced DNA damage, followed by increased activation of mitochondrial pathway.
DNAdam↑,
MMP↓,
TumCCA↑, induction of G2/M cell cycle arrest
eff↓, NAC and GSH were used in our experiment. The MTT results revealed that scavenging of ROS fully attenuated combined treatment-induced cell growth inhibition against HCT116 cell
*toxicity↓, combined treatment showed less cytotoxicity toward NCM460 normal human colon mucosal epithelial cells

1073- SK,  Chemo,    Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3
PAK1↓, significantly inhibited the activity of PAK1 kinase
TumCP↓,
Apoptosis↑,
ChemoSen↑, shikonin sensitized pancreatic cancer cells to chemotherapeutic
ROS↑, Moreover, shikonin has been shown to trigger ROS-based mitochondria-mediated apoptosis and significantly inhibited tumor growth in a human colon cancer SW480 xenograft mouse model [18]

2196- SK,    Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species
- Review, Var, NA
*ALAT↓, shikonin was found to mitigate the rise in ALT and AST levels triggered by LPS/GalN
*AST↓,
*Inflam?, demonstrated the anti-inflammatory properties of shikonin within two traditional mouse models frequently employed in pharmacological research to assess anti-inflammatory activities
*EMT↑, Shikonin stimulates EMT by weakening the nuclear translocation of NF-κB p65
ROS?, naphthoquinone framework possesses the capacity to produce ROS, which in turn modulate cellular oxidative stress levels
TrxR1↓, Duan and colleagues demonstrated that shikonin specifically inhibits the physiological function of TrxR1 by targeting its Sec residue
PERK↑, In vivo Western blot of HCT-15(colon cancer) xenografts showed shikonin upregulated PERK/eIF2α/ATF4/CHOP and IRE1α/JNK pathways.
eIF2α↑,
ATF4↑,
CHOP↑,
IRE1↑,
JNK↑,
eff↝, oral shikonin did not demonstrate anti-tumor effects in the colorectal cancer model, intraperitoneal injection significantly inhibited tumor growth.
DR5↑, upregulation of Death Receptor 5 (DR5) in cholangiocarcinoma cells through ROS-induced activation of the JNK signaling cascade.
Glycolysis↓, inhibited glycolysis in HepG2 cells by suppressing the activity of PKM2, a critical enzyme within the glycolytic pathway
PKM2↓,
ChemoSen↑, The combination of shikonin with drugs can reverse drug resistance and enhance therapeutic efficacy
GPx4↓, shikonin conjunction with cisplatin overcame drug resistance in cancer cells, downregulated GPX4, and upregulated haemoglobin oxygenase 1 (HMOX1) inducing iron death in cells.
HO-1↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   Apoptosis↑,2,   ATF4↑,1,   Casp↑,1,   ChemoSen↑,7,   CHOP↑,1,   Cyt‑c↑,1,   DNAdam↑,1,   DR5↑,1,   eff↓,2,   eff↝,1,   eIF2α↑,1,   Endon↑,1,   GlucoseCon↓,2,   GLUT1↓,1,   Glycolysis↓,3,   GPx4↓,1,   GSH/GSSG↓,1,   HO-1↑,1,   IRE1↑,1,   JNK↑,1,   lactateProd↓,2,   lipid-P↑,1,   MMP↓,2,   Necroptosis↑,1,   PAK1↓,1,   PERK↑,1,   PKM2↓,4,   ROS?,1,   ROS↑,2,   i-ROS↑,1,   selectivity↑,2,   TrxR1↓,1,   TumCCA↑,2,   TumCD↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,3,   tumCV↓,2,   TumVol↓,1,   TumW↓,1,  
Total Targets: 41

Results for Effect on Normal Cells:
ALAT↓,1,   AST↓,1,   EMT↑,1,   Inflam?,1,   toxicity↓,1,  
Total Targets: 5

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
7 Shikonin
3 Cisplatin
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:150  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page