condition found tbRes List
SK, Shikonin: Click to Expand ⟱
Features:
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin.
Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon).
Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao'
-Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties
-Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin
-ic50 cancer cells 1-10uM, normal cells >10uM

-known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway)

Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg
Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin)

-Note half-life15-30mins or 8hr?.
BioAv low, poor water solubility
Pathways:
- usually induce ROS production in cancer cells, and reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


chemoP, ChemoProtective: Click to Expand ⟱
Source:
Type:
Protects normal cells against the effect of Chemo.


Scientific Papers found: Click to Expand⟱
3051- SK,    Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation
- Review, Var, NA
Nrf1↑, Resveratrol is a natural compound that can activate the Nrf2 transcription factor
Apoptosis↑, In different cell lines, resveratrol can increase apoptosis and inhibit the proliferation of cancer cells.
TumCP↓,
eff⇅, But there is a controversy on whether activation of Nrf2 is of clinical benefit in cancer therapy or is a carcinogen?
chemoP↑, chemoprevention effects
eff↑, It has also been suggested that reduction in oxidative conditions in cancer cells may enhance the anticancer effects of antineoplastic drugs [4].
VCAM-1↓, Resveratrol was effective on angiogenesis through an inhibitory direct effect on vascular endothelial growth factor (VEGF) generation and also inhibiting the hypoxia-inducible factor (HIF)-1generation and leads to preventing VEGF secretion
Hif1a↓,

2189- SK,    PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells
- in-vitro, Melanoma, NA
PKM2↓, shikonin suppressed the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) induced neoplastic cell transformation and PKM2 activation in the early stage of carcinogenesis.
chemoP↑, results suggest that shikonin bears chemopreventive potential for human skin cancers in which PKM2 is upregulated,
eff↝, PKM2 activity was increased by 2.5-fold in tumor samples than normal tissues
lactateProd↓, Shikonin Suppressed TPA-Induced Lactate Production
ROS↑, shikonin induces apoptosis in hepatocellular carcinoma cells by the reactive oxygen species (ROS)/Akt and RIP1/NF-κB pathways
*ROS?, in our study, shikonin could preserve mitochondrial function and decrease the levels of ROS, leading to blocking PKM2 activation.
*PKM2↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   chemoP↑,2,   eff↑,1,   eff⇅,1,   eff↝,1,   Hif1a↓,1,   lactateProd↓,1,   Nrf1↑,1,   PKM2↓,1,   ROS↑,1,   TumCP↓,1,   VCAM-1↓,1,  
Total Targets: 12

Results for Effect on Normal Cells:
PKM2↓,1,   ROS?,1,  
Total Targets: 2

Scientific Paper Hit Count for: chemoP, ChemoProtective
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:150  Target#:1171  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page