condition found
Features: |
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin. Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon). Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao' -Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties -Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin -ic50 cancer cells 1-10uM, normal cells >10uM -known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway) Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin) -Note half-life15-30mins or 8hr?. BioAv low, poor water solubility Pathways: - usually induce ROS production in cancer cells, and reduce ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP. In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect. Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses. Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis. Pathways: -GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/ Alkaloids: -Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol. Non-flavonoid phenolic compounds: Curcumin, Resveratrol, Gossypol, Tannic acid. Terpenoids: -Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin. Quinones: -Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin Others: -Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene. |
2359- | SK,  |   | Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery |
- | in-vivo, | Liver, | NA |
2357- | SK,  |   | GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism |
- | Study, | HCC, | NA | - | in-vivo, | NA, | NA |
2356- | SK,  |   | ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment |
- | in-vitro, | Ovarian, | CaOV3 | - | in-vitro, | Ovarian, | OV90 | - | in-vivo, | NA, | NA |
2470- | SK,  |   | PKM2/PDK1 dual-targeted shikonin derivatives restore the sensitivity of EGFR-mutated NSCLC cells to gefitinib by remodeling glucose metabolism |
- | in-vitro, | Lung, | H1299 |
3045- | SK,  |   | Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2) |
- | in-vitro, | PC, | MIA PaCa-2 |
3041- | SK,  |   | Promising Nanomedicines of Shikonin for Cancer Therapy |
- | Review, | Var, | NA |
2419- | SK,  |   | Regulation of glycolysis and the Warburg effect in wound healing |
- | in-vivo, | Nor, | NA |
2418- | SK,  |   | Experimental Study of Hepatocellular Carcinoma Treatment by Shikonin Through Regulating PKM2 |
- | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 |
2415- | SK,  |   | Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways |
- | in-vivo, | Arthritis, | NA |
2370- | SK,  |   | The role of pyruvate kinase M2 in anticancer therapeutic treatments |
- | Review, | Var, | NA |
2362- | SK,  |   | RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide |
- | in-vitro, | GBM, | U87MG | - | in-vivo, | GBM, | NA | - | in-vitro, | GBM, | U251 |
2186- | SK,  |   | Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line |
- | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HCCLM3 |
2185- | SK,  |   | Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis |
- | in-vitro, | Lung, | LLC1 | - | in-vitro, | Melanoma, | B16-BL6 | - | in-vivo, | NA, | NA |
2182- | SK,  | Cisplatin,  |   | Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway |
- | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 | - | in-vivo, | NA, | NA |
2181- | SK,  |   | Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2 |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa |
2187- | SK,  | VitK3,  |   | Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells |
- | in-vitro, | BC, | MCF-7 |
2200- | SK,  |   | Shikonin inhibits the growth of anaplastic thyroid carcinoma cells by promoting ferroptosis and inhibiting glycolysis |
- | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | 8505C |
2196- | SK,  |   | Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species |
- | Review, | Var, | NA |
2192- | SK,  |   | Shikonin Inhibits Tumor Growth of ESCC by suppressing PKM2 mediated Aerobic Glycolysis and STAT3 Phosphorylation |
- | in-vitro, | ESCC, | KYSE-510 | - | in-vitro, | ESCC, | Eca109 | - | in-vivo, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:150 Target#:129 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid