condition found
Features: |
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin. Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon). Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao' -Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties -Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin -ic50 cancer cells 1-10uM, normal cells >10uM -known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway) Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin) -Note half-life15-30mins or 8hr?. BioAv low, poor water solubility Pathways: - usually induce ROS production in cancer cells, and reduce ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Oxidative phosphorylation (or phosphorylation) is the fourth and final step in cellular respiration. Alterations in phosphorylation pathways result in serious outcomes in cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers. Many tumors exhibit a well-known metabolic shift known as the Warburg effect, where glycolysis is favored over OxPhos even in the presence of oxygen. However, this is not universal. Many cancers, including certain subpopulations like cancer stem cells, still rely on OXPHOS for energy production, biosynthesis, and survival. – In several cancers, especially during metastasis or in tumors with high metabolic plasticity, OxPhos can remain active or even be upregulated to meet energy demands. In some cancers, high OxPhos activity correlates with aggressive features, resistance to standard therapies, and poor outcomes, particularly when tumor cells exploit mitochondrial metabolism for survival and metastasis. – Conversely, low OxPhos activity can be associated with a reliance on glycolysis, which is also linked with rapid tumor growth and certain adverse prognostic features. Inhibiting oxidative phosphorylation is not a universal strategy against all cancers. Targeting OXPHOS can potentially disrupt the metabolic flexibility of cancer cells, leading to their death or making them more susceptible to other treatments. Since normal cells also rely on OXPHOS, inhibitors must be carefully targeted to avoid significant toxicity to healthy tissues. Not all tumors are the same. Some may be more glycolytic, while others depend more on mitochondrial metabolism. Therefore, metabolic profiling of tumors is crucial before adopting this strategy. Inhibiting OXPHOS is being explored in combination with other treatments (such as chemo- or immunotherapies) to improve efficacy and overcome resistance. In cancer cells, metabolic reprogramming is a hallmark where cells often rely on glycolysis (known as the Warburg effect); however, many cancer types also depend on OXPHOS for energy production and survival. Targeting OXPHOS(using inhibitor) to increase the production of reactive oxygen species (ROS) can selectively induce oxidative stress and cell death in cancer cells. -One side effect of increased OXPHOS is the production of reactive oxygen species (ROS). -Many cancer cells therefore simultaneously upregulate antioxidant systems to mitigate the damaging effects of elevated ROS. -Increase in oxidative phosphorylation can inhibit cancer growth. |
2186- | SK,  |   | Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line |
- | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HCCLM3 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:150 Target#:230 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid