condition found tbRes List
SK, Shikonin: Click to Expand ⟱
Features:
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin.
Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon).
Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao'
-Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties
-Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin
-ic50 cancer cells 1-10uM, normal cells >10uM

-known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway)

Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg
Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin)

-Note half-life15-30mins or 8hr?.
BioAv low, poor water solubility
Pathways:
- usually induce ROS production in cancer cells, and reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
2229- SK,    Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways
- in-vitro, Melanoma, A375
Apoptosis↑, Shikonin induces apoptosis and autophagy in A375 cells and inhibits their proliferation
TumAuto↑,
TumCP↓,
TumCCA↑, Shikonin caused G2/M phase arrest through upregulation of p21 and downregulation of cyclin B1
P21↑,
cycD1↓,
ER Stress↑, Shikonin significantly triggered ER stress-mediated apoptosis by upregulating the expression of p-eIF2α, CHOP, and cleaved caspase-3.
p‑eIF2α↑,
CHOP↑,
cl‑Casp3↑,
p38↑, induced protective autophagy by activating the p38 pathway, followed by an increase in the levels of p-p38, LC3B-II, and Beclin 1
LC3B-II↑,
Beclin-1↑,
ROS↑, Shikonin increased the production of reactive oxygen species
eff↓, NAC treatment significantly decreased the expression of p-p38, LC3B-II, and Beclin 1.

2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, shikonin suppressed the growth of colon cancer cells in a dose-dependent manner in vitro and in vivo
Bcl-2↓, Shikonin induced mitochondria-mediated apoptosis, which was regulated by Bcl-2 family proteins.
ROS↑, found that shikonin dose-dependently increased the generation of intracellular ROS in colon cancer cells
Bcl-xL↓, generation of ROS, down-regulated expression of Bcl-2 and Bcl-xL, depolarization of the mitochondrial membrane potential and activation of the caspase cascade
MMP↓,
Casp↑,
selectivity↑, shikonin presented minimal toxicity to non-neoplastic colon cells and no liver injury in xenograft models
cycD1↓, Cyclin D expression was decreased with shikonin treatment
TumCCA↑, induced cell growth inhibition by the induction G1 cell cycle arrest.
eff↓, NAC or GSH could block the shikonin-dependent burst of intracellular ROS

2227- SK,    Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
selectivity↑, In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells.
TumCP↓,
TumCD↑,
ROS↑, SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis.
MMP↓,
Casp↑, SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade
Cyt‑c↑,
Endon↑, nuclear translocation of AIF and Endonuclease G
AIF↑,
eff↓, NAC and GSH significantly inhibited SHK-induced death
ChemoSen↑, SHK enhances chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin
TumCCA↑, SHK caused S-phase cell cycle arrest in SGC-7901 and BGC-823 gastric cancer cells
GSH/GSSG↓, We found that the GSH/GSSG ratio was significantly decreased when treated with SHK.
lipid-P↑, SHK increases lipid peroxidation and induces apoptosis in vivo

3047- SK,    Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
TumCG↓, SKN inhibited colon cancer cell growth, suppressed both constitutive and IL-6-induced STAT3 phosphorylation, and downregulated the expression of ADAM17
p‑STAT3↓,
ADAM17↓,
Apoptosis↑, SKN promoted cell apoptosis, as evidenced by increased expression levels of cleaved caspase-3 and cleaved PARP in both cell lines
Casp3↑,
cl‑PARP↑,
cycD1↓, SKN decreased the expression of cyclin D1 and cyclin E1, thus suggesting the disruption of the cell cycle and the suppression of cell growth
cycE↓,
TumCCA↑,
JAK1?, The inhibitory effects of SKN on the phosphorylation of both JAK1 and JAK2 in the two cell lines were also observed
p‑JAK1↓,
p‑JAK2↓,
p‑eIF2α↑, phosphorylation levels of eIF2α were enhanced by SKN (20 µM) in the HCT116 and SW480 colon cancer cells
eff↓, NAC decreased SKN-induced p-eIF2α expression and reversed the SKN-mediated downregulation of ADAM17 protein expression
ROS↑, suppressed the expression of ADAM17 mediated by ROS-associated p-eIF2α expression in the HCT116 and SW480 colon cancer cells
IL6↓, demonstrated that the antitumor effects of SKN on colon cancer cells were associated with its inhibition of the IL-6/STAT3 signaling pathway.

3044- SK,    Shikonin Inhibits Non-Small-Cell Lung Cancer H1299 Cell Growth through Survivin Signaling Pathway
- in-vitro, Lung, H1299 - in-vitro, Lung, H460
TumCP↓, Results showed that shikonin inhibited the NSCLC H1299 cell proliferation in a dose-dependent manner.
survivin↓, Shikonin also inhibited the mRNA expression and protein level of survivin in H1299 cells
TumCCA↓, Shikonin arrested H1299 cell cycle at the G0/G1 phase by regulating CDK/cyclin family members
CDK2↓,
CDK4↓,
XIAP↓, shikonin regulated the expression of X-linked inhibitor of apoptosis- (XIAP-) mediated caspases 3 and 9, thus leading to the damage of mitochondrial membrane potential and induction of H1299 cell apoptosis.
Casp3↑, subsequently regulates the protein expression of XIAP/caspase 3/9, CDK2/4, and cyclin E/D1.
Casp9↑,
cycD1↓, downregulated the protein levels of CDK2, CDK4, cyclin E, and cyclin D1
cycE↓,

3043- SK,    Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells.
- in-vitro, Melanoma, RPMI-8226
IGF-1↓, Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells
Apoptosis↑, Shikonin suppressed the cellular growth of RPMI8226 and IM9 myeloma cells, via induction of apoptosis in a dose (0–1 μM)- and time (0–24 h)-dependent manner.
TumCCA↑, Treatment with 0.5 μM Shikonin rapidly increased the population of cells in the G0/G1 phase with reduction of cells in the S phase
MMP↓, Shikonin-induced apoptosis was in association with the loss of mitochondrial transmembrane potentials, and activation of caspase-3.
Casp3↑,
P53↑, Expression of p53 and Bax proteins was increased with down-regulation of Mcl-1 protein
BAX↑,
Mcl-1↓,
EGFR↓, Shikonin has reported to be an inhibitor of protein tyrosine kinase such as EGFR, v-Src, and KDR/Flk-1.
Src↑,
KDR/FLK-1↓,
p‑IGF-1↓, Shikonin inhibited phosphorylation of IGF-1 receptor as early as 30 min with inhibition of PI3K/Akt signaling
PI3K↓,
Akt↓,

3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, One study using H-shikonin in mice showed that shikonin was rapidly absorbed after oral and intramuscular administration, with a half-life in plasma of 8.79 h and a distribution volume of 8.91 L/kg.
*BioAv↓, shikonin is generally used in creams and ointments, that is, oil-based preparations; indeed, its insolubility in water is usually the cause of its low bioavailability
*BioAv↑, 200-fold increase in the solubility, photostability, and in vitro permeability of shikonin through the formation of a 1 : 1 inclusion complex with hydroxypropyl-β-cyclodextrin.
*BioAv↑, 181-fold increase in the solubility of shikonin in aqueous media in the presence of β-lactoglobulin at a concentra- tion of 3.1 mg/mL
*Inflam↓, anti-inflammatory effect of shikonin
*TNF-α↓, shikonin inhibited TNF-α production in LPS-stimulated rat primary macrophages as well as NF-κB translocation from the cytoplasm to the nucleus.
*other↑, authors found that treatment with shikonin prevented the shortening of the colorectum and decreased weight loss by 5 % while improving the ap- pearance of feces and preventing bloody stools.
*MPO↓, MPO activity was reduced as well as the expression of COX-2, the activation of NF-κB and that of STAT3.
*COX2↓,
*NF-kB↑,
*STAT3↑,
*antiOx↑, Antioxidant Effects of Shikonin
*ROS↓, radical scavenging activity of shikonin
*neuroP↑, shown to exhibit a neuroprotective effect against the damage caused by ischemia/reperfusion in adult male Kunming mice
*SOD↑, it also attenuated neuronal damage and the upregulation of superoxide dismutase, catalase, and glutathione peroxidase activities while reducing the glutathione/glutathione disulfide ratio.
*Catalase↑,
*GPx↑,
*Bcl-2↑, shikonin upregulated Bcl-2, downregulated Bax and prevented cell nuclei from undergoing morphological changes typical of apoptosis.
*BAX↓,
cardioP↑, Two different studies have suggested a possible cardioprotective effect of shikonin that would be related to its anti-inflammatory and antioxidant effects.
AntiCan↑, A wide spectrum of anticancer mechanisms of action have been described for shikonin:
NF-kB↓, suppression of NF-κB-regulated gene products [44],
ROS↑, ROS generation [46],
PKM2↓, inhibition of tumor-specific pyruvate kinase-M2 [47,48]
TumCCA↑, cell cycle arrest [49]
Necroptosis↑, or induction of necroptosis [50],
Apoptosis↑, shikonin at 1 μM induced caspase-dependent apoptosis in U937 cells after 6 h with an increase in DNA fragmentation, intracellular ROS, low mitochondrial membrane potential
DNAdam↑,
MMP↓,
Cyt‑c↑, At 10 μM, shikonin induced a greater release of cytochrome c from the mitochondria and of lactate dehydrogenase,
LDH↝,

2008- SK,  Cisplatin,    Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
ChemoSen↑, combination of shikonin and cisplatin exhibited synergistic anticancer efficacy
selectivity↑, and achieved greater selectivity between cancer cells and normal cells.
i-ROS↑, By inducing intracellular oxidative stress, shikonin potentiated cisplatin-induced DNA damage, followed by increased activation of mitochondrial pathway.
DNAdam↑,
MMP↓,
TumCCA↑, induction of G2/M cell cycle arrest
eff↓, NAC and GSH were used in our experiment. The MTT results revealed that scavenging of ROS fully attenuated combined treatment-induced cell growth inhibition against HCT116 cell
*toxicity↓, combined treatment showed less cytotoxicity toward NCM460 normal human colon mucosal epithelial cells

1312- SK,    Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells
- in-vitro, OS, 143B
ROS↑, Taken together, our results reveal that shikonin increased ROS generation and ERK activation, and reduced Bcl2, which consequently caused the cells to undergo apoptosis.
p‑ERK↑, phosphorylated ERK was apparently increased in response to shikonin treatment for 24 and 48 h.
Bcl-2↓,
cl‑PARP↑, PARP cleavage, another well known characteristic of apoptosis, was also found in shikonin-treated cells.
Apoptosis↑,
TumCCA↑, 4 and 8mM shikonin for 24 h obviously caused G2/M phase arrest
Bcl-2↑, shikonin also decreased Bcl-2 expression, and decreased the pro-caspase 3
proCasp3↓,

965- SK,    Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620
Hif1a↓, shikonin inhibited HIF-1α protein synthesis without affecting the expression of HIF-1α mRNA or degrading HIF-1α protein
ROS↓, shikonin resulted in a significant decrease of hypoxia-induced ROS production in HCT116 and SW620 cells
mTOR↓,
p70S6↓,
4E-BP1↓,
eIF2α↓,
TumCCA↑, HCT116 cells
TumCP↓, HCT116 and SW620
Half-Life↝, shikonin-treated cells (Fig. S1), showing the half-life was around 50 min in HCT116 and SW620 cells.

2198- SK,    Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis
- in-vitro, OS, MG63 - in-vitro, OS, 143B
TumCP↓, shikonin significantly suppressed OS cells proliferation and blocked the cell cycle progression in vitro.
TumCCA↑,
Ferroptosis↑, ferroptosis in OS cells by promoting the Fe2+ accumulation, reactive oxygen species and lipid peroxidation formation, malondialdehyde production and mitochondrial damage
Iron↑,
ROS↑,
lipid-P↑,
MDA↑,
mtDam↑,
NRF2↓, influenced Nrf2 stability via inducing ubiquitin degradation, which suppressed the expression of Nrf2 downstream targets xCT and GPX4, and led to stimulating ferroptosis. Promoted Nrf2 degradation
xCT↓,
GPx4↓,
GSH/GSSG↓, GSH/GSSG ratio declined after shikonin (1.5 uM) treatment
Keap1↑, shikonin (1.5 uM) significantly downregulated the expression of Nrf2 and upregulated the expression of Keap1

2194- SK,    Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
tumCV↓, Shikonin reduced esophageal cancer cells viability and induced cell cycle arrest and apoptosis.
TumCCA↑,
Apoptosis↑,
EGFR↓, Shikonin decreased EGFR, PI3K, p-AKT, HIF1α and PKM2 expression
PI3K↓,
Hif1a↓,
PKM2↓,
cycD1↓, shikonin reduced the expression of PKM2, HIF1α and cyclinD1 in tumor tissues
AntiTum↑, shikonin has a powerful antitumor effect in vivo.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 12

Results for Effect on Cancer/Diseased Cells:
4E-BP1↓,1,   ADAM17↓,1,   AIF↑,1,   Akt↓,1,   AntiCan↑,1,   AntiTum↑,1,   Apoptosis↑,6,   BAX↑,1,   Bcl-2↓,2,   Bcl-2↑,1,   Bcl-xL↓,1,   Beclin-1↑,1,   cardioP↑,1,   Casp↑,2,   Casp3↑,3,   cl‑Casp3↑,1,   proCasp3↓,1,   Casp9↑,1,   CDK2↓,1,   CDK4↓,1,   ChemoSen↑,2,   CHOP↑,1,   cycD1↓,5,   cycE↓,2,   Cyt‑c↑,2,   DNAdam↑,2,   eff↓,5,   EGFR↓,2,   eIF2α↓,1,   p‑eIF2α↑,2,   Endon↑,1,   ER Stress↑,1,   p‑ERK↑,1,   Ferroptosis↑,1,   GPx4↓,1,   GSH/GSSG↓,2,   Half-Life↝,1,   Hif1a↓,2,   IGF-1↓,1,   p‑IGF-1↓,1,   IL6↓,1,   Iron↑,1,   JAK1?,1,   p‑JAK1↓,1,   p‑JAK2↓,1,   KDR/FLK-1↓,1,   Keap1↑,1,   LC3B-II↑,1,   LDH↝,1,   lipid-P↑,2,   Mcl-1↓,1,   MDA↑,1,   MMP↓,5,   mtDam↑,1,   mTOR↓,1,   Necroptosis↑,1,   NF-kB↓,1,   NRF2↓,1,   P21↑,1,   p38↑,1,   P53↑,1,   p70S6↓,1,   cl‑PARP↑,2,   PI3K↓,2,   PKM2↓,2,   ROS↓,1,   ROS↑,7,   i-ROS↑,1,   selectivity↑,3,   Src↑,1,   p‑STAT3↓,1,   survivin↓,1,   TumAuto↑,1,   TumCCA↓,1,   TumCCA↑,11,   TumCD↑,1,   TumCG↓,2,   TumCP↓,5,   tumCV↓,1,   xCT↓,1,   XIAP↓,1,  
Total Targets: 81

Results for Effect on Normal Cells:
antiOx↑,1,   BAX↓,1,   Bcl-2↑,1,   BioAv↓,1,   BioAv↑,2,   Catalase↑,1,   COX2↓,1,   GPx↑,1,   Half-Life↝,1,   Inflam↓,1,   MPO↓,1,   neuroP↑,1,   NF-kB↑,1,   other↑,1,   ROS↓,1,   SOD↑,1,   STAT3↑,1,   TNF-α↓,1,   toxicity↓,1,  
Total Targets: 19

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
12 Shikonin
1 Cisplatin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:150  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page