condition found
Features: |
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin. Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon). Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao' -Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties -Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin -ic50 cancer cells 1-10uM, normal cells >10uM -known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway) Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin) -Note half-life15-30mins or 8hr?. BioAv low, poor water solubility Pathways: - usually induce ROS production in cancer cells, and reduce ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Cytochrome c ** The term "release of cytochrome c" ** an increase in level for the cytosol. Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis. The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis. In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death. Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation. Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol. The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death. On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer. On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells. Overexpressed in Breast, Lung, Colon, and Prostrate. Underexpressed in Ovarian, and Pancreatic. |
2227- | SK,  |   | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
- | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
3040- | SK,  |   | Pharmacological Properties of Shikonin – A Review of Literature since 2002 |
- | Review, | Var, | NA | - | Review, | IBD, | NA | - | Review, | Stroke, | NA |
2007- | SK,  |   | Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells |
- | in-vitro, | lymphoma, | U937 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | OS, | U2OS | - | NA, | Nor, | RPE-1 |
1346- | SK,  |   | An Oxidative Stress Mechanism of Shikonin in Human Glioma Cells |
- | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | Hs683 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:150 Target#:77 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid