condition found tbRes List
SK, Shikonin: Click to Expand ⟱
Features:
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin.
Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon).
Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao'
-Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties
-Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin
-ic50 cancer cells 1-10uM, normal cells >10uM

-known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway)

Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg
Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin)

-Note half-life15-30mins or 8hr?.
BioAv low, poor water solubility
Pathways:
- usually induce ROS production in cancer cells, and reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH, LDH">LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


LDH, Lactate Dehydrogenase: Click to Expand ⟱
Source:
Type:
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits.
LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels.

However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism.

Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis.

Inhibitors:
Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors.

• Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity.
• Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity.
• Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity.
• Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity.
• Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity.
• Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity.
Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine


Scientific Papers found: Click to Expand⟱
3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, One study using H-shikonin in mice showed that shikonin was rapidly absorbed after oral and intramuscular administration, with a half-life in plasma of 8.79 h and a distribution volume of 8.91 L/kg.
*BioAv↓, shikonin is generally used in creams and ointments, that is, oil-based preparations; indeed, its insolubility in water is usually the cause of its low bioavailability
*BioAv↑, 200-fold increase in the solubility, photostability, and in vitro permeability of shikonin through the formation of a 1 : 1 inclusion complex with hydroxypropyl-β-cyclodextrin.
*BioAv↑, 181-fold increase in the solubility of shikonin in aqueous media in the presence of β-lactoglobulin at a concentra- tion of 3.1 mg/mL
*Inflam↓, anti-inflammatory effect of shikonin
*TNF-α↓, shikonin inhibited TNF-α production in LPS-stimulated rat primary macrophages as well as NF-κB translocation from the cytoplasm to the nucleus.
*other↑, authors found that treatment with shikonin prevented the shortening of the colorectum and decreased weight loss by 5 % while improving the ap- pearance of feces and preventing bloody stools.
*MPO↓, MPO activity was reduced as well as the expression of COX-2, the activation of NF-κB and that of STAT3.
*COX2↓,
*NF-kB↑,
*STAT3↑,
*antiOx↑, Antioxidant Effects of Shikonin
*ROS↓, radical scavenging activity of shikonin
*neuroP↑, shown to exhibit a neuroprotective effect against the damage caused by ischemia/reperfusion in adult male Kunming mice
*SOD↑, it also attenuated neuronal damage and the upregulation of superoxide dismutase, catalase, and glutathione peroxidase activities while reducing the glutathione/glutathione disulfide ratio.
*Catalase↑,
*GPx↑,
*Bcl-2↑, shikonin upregulated Bcl-2, downregulated Bax and prevented cell nuclei from undergoing morphological changes typical of apoptosis.
*BAX↓,
cardioP↑, Two different studies have suggested a possible cardioprotective effect of shikonin that would be related to its anti-inflammatory and antioxidant effects.
AntiCan↑, A wide spectrum of anticancer mechanisms of action have been described for shikonin:
NF-kB↓, suppression of NF-κB-regulated gene products [44],
ROS↑, ROS generation [46],
PKM2↓, inhibition of tumor-specific pyruvate kinase-M2 [47,48]
TumCCA↑, cell cycle arrest [49]
Necroptosis↑, or induction of necroptosis [50],
Apoptosis↑, shikonin at 1 μM induced caspase-dependent apoptosis in U937 cells after 6 h with an increase in DNA fragmentation, intracellular ROS, low mitochondrial membrane potential
DNAdam↑,
MMP↓,
Cyt‑c↑, At 10 μM, shikonin induced a greater release of cytochrome c from the mitochondria and of lactate dehydrogenase,
LDH↝,

2181- SK,    Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Cerv, HeLa
Glycolysis↓, Shikonin and alkannin significantly inhibited the glycolytic rate, as manifested by cellular lactate production and glucose consumption in drug-sensitive and resistant cancer cell lines
lactateProd↓,
GlucoseCon↓,
PKM2↓, shikonin and alkannin are the most potent and specific inhibitors to PKM2 reported so far
LDH∅, LDH was not inhibited by shikonin, alkannin and the analogs

1284- SK,    Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy
- in-vitro, Melanoma, RPMI-8226 - in-vitro, Melanoma, U266
Ferroptosis↑, SHK treatment leads to the ferroptosis of MM cells
LDH↓,
ROS↑, Cellular mitochondrial lipid ROS also increased after SHK treatment
Iron↑,
lipid-P↑,
ATP↓, extracellular release of Adenosine 5’-triphosphate (ATP) and High mobility group protein B1 (HMGB1
HMGB1↓,
GPx4↓, Additionally, the ferroptosis markers GPX4 and solute carrier family 7 member 11 (xCT/SLC7A11) were downregulated at both the transcriptional and translational levels after SHK treatment
MDA↑, SHK treatment led to an increase in MDA content in cells. In contrast, the levels of SOD and GSH decreased in cells
SOD↓,
GSH↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   Apoptosis↑,1,   ATP↓,1,   cardioP↑,1,   Cyt‑c↑,1,   DNAdam↑,1,   Ferroptosis↑,1,   GlucoseCon↓,1,   Glycolysis↓,1,   GPx4↓,1,   GSH↓,1,   HMGB1↓,1,   Iron↑,1,   lactateProd↓,1,   LDH↓,1,   LDH↝,1,   LDH∅,1,   lipid-P↑,1,   MDA↑,1,   MMP↓,1,   Necroptosis↑,1,   NF-kB↓,1,   PKM2↓,2,   ROS↑,2,   SOD↓,1,   TumCCA↑,1,  
Total Targets: 26

Results for Effect on Normal Cells:
antiOx↑,1,   BAX↓,1,   Bcl-2↑,1,   BioAv↓,1,   BioAv↑,2,   Catalase↑,1,   COX2↓,1,   GPx↑,1,   Half-Life↝,1,   Inflam↓,1,   MPO↓,1,   neuroP↑,1,   NF-kB↑,1,   other↑,1,   ROS↓,1,   SOD↑,1,   STAT3↑,1,   TNF-α↓,1,  
Total Targets: 18

Scientific Paper Hit Count for: LDH, Lactate Dehydrogenase
3 Shikonin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:150  Target#:906  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page