condition found
Features: |
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin. Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon). Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao' -Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties -Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin -ic50 cancer cells 1-10uM, normal cells >10uM -known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway) Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin) -Note half-life15-30mins or 8hr?. BioAv low, poor water solubility Pathways: - usually induce ROS production in cancer cells, and reduce ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues. Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance Factors that affect selectivity: 1. Ability of Cancer cells to preferentially absorb a product/drug -EPR-enhanced permeability and retention of cancer cells -nanoparticle formations/carriers may target cancer cells over normal cells -Liposomal formations. Also negatively/positively charged affects absorbtion 2. Product/drug effect may be different for normal vs cancer cells - hypoxia - transition metal content levels (iron/copper) change probability of fenton reaction. - pH levels - antiOxidant levels and defense levels 3. Bio-availability |
2230- | SK,  |   | Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer |
- | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
2227- | SK,  |   | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
- | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
- | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | Bel-7402 |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | MCF12A | - | in-vivo, | NA, | NA |
2185- | SK,  |   | Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis |
- | in-vitro, | Lung, | LLC1 | - | in-vitro, | Melanoma, | B16-BL6 | - | in-vivo, | NA, | NA |
2010- | SK,  |   | Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway |
- | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Nor, | CCD19 |
2009- | SK,  |   | Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer |
- | in-vitro, | Bladder, | NA |
2008- | SK,  | Cisplatin,  |   | Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo |
- | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
2007- | SK,  |   | Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells |
- | in-vitro, | lymphoma, | U937 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | OS, | U2OS | - | NA, | Nor, | RPE-1 |
977- | SK,  |   | A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells |
- | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HMEC |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:150 Target#:1110 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid