condition found tbRes List
SK, Shikonin: Click to Expand ⟱
Features:
The (R)-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin.
Shikonin is a naphthoquinone derivative primarily isolated from the roots of plants in the Boraginaceae family (e.g., Lithospermum erythrorhizon).
Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao'
-Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with anti-inflammatory properties
-Quinone methides (QMs) are highly reactive intermediates formed from natural compounds like shikonin
-ic50 cancer cells 1-10uM, normal cells >10uM

-known as Glycolysis inhibitor: ( inhibit pyruvate kinase M2 (PKM2*******), a key enzyme in the glycolytic pathway)

Available from mcsformulas.com Shikonin Pro Liposomal, 30 mg
Also In Glycolysis Inhibithree(100 mg PHLORIZIN,10 mg TANSHINONE IIA, 8 mg Shikonin)

-Note half-life15-30mins or 8hr?.
BioAv low, poor water solubility
Pathways:
- usually induce ROS production in cancer cells, and reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ GPx4↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, P53↑,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HK2, Hexokinase 2: Click to Expand ⟱
Source:
Type: enzyme
HK2 (Hexokinase 2) is an enzyme that plays a crucial role in glycolysis, the process by which cells convert glucose into energy. HK2 is a key regulatory enzyme in the glycolytic pathway, and it is primarily expressed in various tissues, including muscle, brain, and cancer cells.
HK2 has been shown to be overexpressed in many types of tumors, including breast, lung, and colon cancer. This overexpression may contribute to the development and progression of cancer by promoting glycolysis and energy production in cancer cells.
HK2 is a key regulatory enzyme in the glycolytic pathway.
HK2 plays a role in the regulation of glucose metabolism in diabetes.
HK2 is involved in the regulation of cell proliferation, apoptosis, and autophagy.

HK2 Inhibitors:
-2DG
-Curcumin
-Resveratrol
-EGCG
-Berberine
-Methyl Jasmonate (MJ)
-Honokiol


Scientific Papers found: Click to Expand⟱
2419- SK,    Regulation of glycolysis and the Warburg effect in wound healing
- in-vivo, Nor, NA
Glycolysis↓, Treatment with 5–10 μM of the glycolysis inhibitor shikonin significantly decreased gene expression of the facilitative glucose transporters, GLUT1 and GLUT3
GLUT1↓,
GLUT3↓,
HK2↓, shikonin downregulated expression of the rate-limiting enzymes HK1 and HK2, although a 20 μM dose was needed
HK1↓, HK1
PFK1↓, Shikonin treatment also downregulated the rate-limiting enzyme PFK1
PFK2↓, PFK2 expression was only significantly lowered with a 20 μM dose
PKM2↓, 5 μM shikonin treatment inhibits gene expression of PKM2 (8.59 vs. 2.30, P < 0.001) and downregulated PDK1
lactateProd↓, coupled with decreased lactate production at higher concentrations of shikonin (10 μM and 20 μM)
GlucoseCon↓, shikonin effectively downregulated key enzymes involved in glucose uptake, glycolysis, and lactate production

2416- SK,    Shikonin induces cell death by inhibiting glycolysis in human testicular cancer I-10 and seminoma TCAM-2 cells
- in-vitro, Testi, TCAM-2
MMP↓, Shikonin treatment significantly reduced mitochondrial membrane potential, increased ROS levels and lower the level of lactic acid in both I-10 and TCAM-2 cells
ROS↑,
lactateProd↓,
Bcl-2↓, shikonin treatment significantly down- regulated the expressions of Bax, Bcl-2, cleaved caspase-3, PKM2, GLUT1 and HK2, and up-regulated the expression of autophagy-related protein LC3B
cl‑Casp3↓,
PKM2↓,
GLUT1↓,
HK2↓,
LC3B↑,

2415- SK,    Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways
- in-vivo, Arthritis, NA
Apoptosis?, shikonin induced apoptosis and autophagy in RA-FLSs by activating the production of reactive oxygen species (ROS) and inhibiting intracellular ATP levels, glycolysis-related proteins, and the PI3K-AKT-mTOR signaling pathway.
TumAuto↑,
ROS↑,
ATP↓,
Glycolysis↓, shikonin can inhibit RA-glycolysis in FLSs
PI3K↓,
Akt↓,
mTOR↓,
*Apoptosis↓, Shikonin can significantly reduce the expression of apoptosis-related proteins, paw swelling in rat arthritic tissues, and the levels of inflammatory factors in peripheral blood, such as TNF-α, IL-6, IL-8, IL-10, IL-17A, and IL-1β while showing less
*Inflam↓,
*TNF-α↓,
*IL6↓,
*IL8↓,
*IL10↓,
*IL17↓,
*hepatoP↑, while showing less toxicity to the liver and kidney.
*RenoP↑,
PKM2↓, The expression of glycogen proteins PKM2, GLUT1, and HK2 decreased with increasing concentrations of shikonin
GLUT1↓,
HK2↓,

2362- SK,    RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide
- in-vitro, GBM, U87MG - in-vivo, GBM, NA - in-vitro, GBM, U251
RIP1↑, we found shikonin activated RIP1 and RIP3 in glioma cells in vitro and in vivo, which was accompanied with glycolysis suppression
RIP3↑,
Glycolysis↓,
G6PD↓, shikonin-induced decreases of glucose-6-phosphate and pyruvate and downregulation of HK II and PKM2
HK2↓,
PKM2↓,
H2O2↑, shikonin also triggered accumulation of intracellular H2O2 and depletion of GSH and cysteine
GSH↓,
ROS↑, It was documented that inhibition of HK II with its inhibitor 3-bromopyruvate or knockdown of its level resulted in accumulation of ROS

2192- SK,    Shikonin Inhibits Tumor Growth of ESCC by suppressing PKM2 mediated Aerobic Glycolysis and STAT3 Phosphorylation
- in-vitro, ESCC, KYSE-510 - in-vitro, ESCC, Eca109 - in-vivo, NA, NA
TumCP↓, Shikonin effectively inhibited cell proliferation in dose-dependent and time-dependent manner compared with the control group
Glycolysis↓, detection of glycolysis showed that Shikonin suppressed the glucose consumption, lactate production, glycolytic intermediates and pyruvate kinase enzymatic activity.
GlucoseCon↓,
lactateProd↓,
PKM2↓,
p‑PKM2↓, decreased the expression of p-PKM2 and p-STAT3 in vivo
p‑STAT3↓,
GLUT1↓, Shikonin suppressed the expression of GLUT1 and HK2 proteins which are related to glycolysis.
HK2↓,
TumW↓, tumor weight in the Shikonin group decreased by approximately 40% compared with the vehicle control group,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Apoptosis?,1,   ATP↓,1,   Bcl-2↓,1,   cl‑Casp3↓,1,   G6PD↓,1,   GlucoseCon↓,2,   GLUT1↓,4,   GLUT3↓,1,   Glycolysis↓,4,   GSH↓,1,   H2O2↑,1,   HK1↓,1,   HK2↓,5,   lactateProd↓,3,   LC3B↑,1,   MMP↓,1,   mTOR↓,1,   PFK1↓,1,   PFK2↓,1,   PI3K↓,1,   PKM2↓,5,   p‑PKM2↓,1,   RIP1↑,1,   RIP3↑,1,   ROS↑,3,   p‑STAT3↓,1,   TumAuto↑,1,   TumCP↓,1,   TumW↓,1,  
Total Targets: 30

Results for Effect on Normal Cells:
Apoptosis↓,1,   hepatoP↑,1,   IL10↓,1,   IL17↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,1,   RenoP↑,1,   TNF-α↓,1,  
Total Targets: 9

Scientific Paper Hit Count for: HK2, Hexokinase 2
5 Shikonin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:150  Target#:773  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page