condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


RadioS, RadioSensitizer: Click to Expand ⟱
Source:
Type:
A radiosensitizer is an agent that makes cancer cells more sensitive to the damaging effects of radiation therapy. By using a radiosensitizer, clinicians aim to enhance the effectiveness of radiation treatment by either increasing the damage incurred by tumor cells or by interfering with the cancer cells’ repair mechanisms. This can potentially allow for lower doses of radiation, reduced side effects, or improved treatment outcomes.
Pathways that help Radiosensitivity: downregulating HIF-1α, increase SIRT1, Txr

List of Natural Products with radiosensitizing properties:
-Curcumin:modulate NF-κB, STAT3 and has been shown in preclinical studies to enhance the effects of radiation by inhibiting cell survival pathways.
-Resveratrol:
-EGCG:
-Quercetin:
-Genistein:
-Parthenolide:

How radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including:
-gold nanoparticles (GNPs),
-gold triethylphosphine cyanide ([Au(SCN) (PEt3)]),
-auranofin, ceria nanoparticles (CONPs),
-curcumin and its derivatives,
-piperlongamide,
-indolequinone derivatives,
-micheliolide,
-motexafin gadolinium, and
-ethane selenide selenidazole derivatives (SeDs)


Scientific Papers found: Click to Expand⟱
3183- SFN,    Sulforaphane potentiates the efficacy of chemoradiotherapy in glioblastoma by selectively targeting thioredoxin reductase 1
- in-vitro, GBM, NA
RadioS↑, SFN synergistically improves chemoradiotherapy efficacy in GBM cells
TrxR1↓, Herein, we demonstrate that sulforaphane (SFN), an isothiocyanate phytochemical with anti-cancer effects, inhibits the activity of thioredoxin reductase 1 (TrxR1)
ROS↑, This inhibition of TrxR1 leads to the accumulation of reactive oxygen species (ROS), thereby enhancing chemoradiotherapy-induced apoptosis in GBM cells.
ChemoSen↑,
Prx↓, Impaired/reduced function(ai)

1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, RAW: higher amounts were detected when broccoli were eaten raw (bioavailability equal to 37%), compared to the cooked broccoli (bioavailability 3.4%)
HDAC↓, Sulforaphane is able to down-regulate HDAC activity and induce histone hyper-acetylation in tumor cell
TumCCA↓, Sulforaphane induces cell cycle arrest in G1, S and G2/M phases,
eff↓, in leukemia stem cells, sulforaphane potentiates imatinib effect through inhibition of the Wnt/β-catenin functions
Wnt↓,
β-catenin/ZEB1↓,
Casp12?, inducing caspases activation
Bcl-2↓,
cl‑PARP↑,
Bax:Bcl2↑, unbalancing the ratio Bax/Bcl-2
IAP1↓, down-regulating IAP family proteins
Casp3↑,
Casp9↑,
Telomerase↓, In Hep3B cells, sulforaphane reduces telomerase activity
hTERT↓, inhibition of hTERT expression;
ROS?, increment of ROS, induced by this compound, is essential for the downregulation of transcription and of post-translational modification of hTERT in suppression of telomerase activity
DNMTs↓, (2.5 - 10 μM) represses hTERT by impacting epigenetic pathways, in particular through decreased DNA methyltransferases activity (DNMTs)
angioG↓, inhibit tumor development through regulation of angiogenesis
VEGF↓,
Hif1a↓,
cMYB↓,
MMP1↓, inhibition of migration and invasion activities induced by sulforaphane in oral carcinoma cell lines has been associated to the inhibition of MMP-1 and MMP-2
MMP2↓,
MMP9↓,
ERK↑, inhibits invasion by activating ERK1/2, with consequent upregulation of E-cadherin (an invasion inhibitor)
E-cadherin↑,
CD44↓, downregulation of CD44v6 and MMP-2 (invasion promoters)
MMP2↓,
eff↑, ombination of sulforaphane and quercetin synergistically reduces the proliferation and migration of melanoma (B16F10) cells
IL2↑, induces upregulation of IL-2 and IFN-γ
IFN-γ↑,
IL1β↓, downregulation of IL-1beta, IL-6, TNF-α, and GM-CSF
IL6↓,
TNF-α↓,
NF-kB↓, sulforaphane inhibits the phorbol ester induction of NF-κB, inhibiting two pathways, ERK1/2 and NF-κB
ERK↓,
NRF2↑, At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2.
RadioS↑, sulforaphane could be used as a radio-sensitizing agent in prostate cancer if clinical trials will confirm the pre-clinical results.
ChemoSideEff↓, chemopreventive effects of sulforaphane

1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, current evidence supporting the neuroprotective and anticancer effects of SFN
AntiCan↑,
NRF2↑, neuroprotective effects through the activation of the Nrf2 pathway
HDAC↓, histone deacetylase was inhibited after human subjects ingested 68 g of broccoli sprouts
eff↑, sensitize cancer cells to chemotherapy
*ROS↓, protecting neurons [14] and microglia [15] against oxidative stress
neuroP↑, neuroprotective effects in Alzheimer’s disease (AD)
HDAC↓, capacity as a histone deacetylase (HDAC) inhibitor
*toxicity∅, normal cells are relatively resistant to SFN-induced cell death
BioAv↑, SFN has good bioavailability; it can reach high intracellular and plasma concentrations
eff↓, However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window
cycD1↓, in breast cancer
CDK4↓, in breast cancer
p‑RB1↓, in breast cancer
Glycolysis↓, in prostate cancer
miR-30a-5p↑, ovarian cancer
TumCCA↑, gastric cancer
TumCG↓,
TumMeta↓,
eff↑, SFN emerged as a critical enhancer of ST’s efficacy by suppressing resistance in RCC cells, offering a potent approach to overcome ST monotherapy limitations.
ChemoSen↑, SFN may improve the effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them
RadioS↑, SFN may help protect healthy cells and tissues from the harmful effects of radiation
CardioT↓, Several studies have demonstrated the protective role of SFN in cardiotoxicity
angioG↓, In colon cancers, SFN blocks cells’ progression and angiogenesis by inhibiting HIF-1α and VEGF expression
Hif1a↓,
VEGF↓,
*BioAv?, SFN is well absorbed in the intestine, with an absolute bioavailability of approximately 82%.
*Half-Life∅, In rats, after an oral dose of 50 μmol of SFN, the plasma concentration of SFN can peak at 20 μM at 4 h and decline with a half-life of about 2.2 h


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
angioG↓,2,   AntiCan↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,1,   BioAv↑,1,   CardioT↓,1,   Casp12?,1,   Casp3↑,1,   Casp9↑,1,   CD44↓,1,   CDK4↓,1,   ChemoSen↑,2,   ChemoSideEff↓,1,   cMYB↓,1,   cycD1↓,1,   DNMTs↓,1,   E-cadherin↑,1,   eff↓,2,   eff↑,3,   ERK↓,1,   ERK↑,1,   Glycolysis↓,1,   HDAC↓,3,   Hif1a↓,2,   hTERT↓,1,   IAP1↓,1,   IFN-γ↑,1,   IL1β↓,1,   IL2↑,1,   IL6↓,1,   miR-30a-5p↑,1,   MMP1↓,1,   MMP2↓,2,   MMP9↓,1,   neuroP↑,2,   NF-kB↓,1,   NRF2↑,2,   cl‑PARP↑,1,   Prx↓,1,   RadioS↑,3,   p‑RB1↓,1,   ROS?,1,   ROS↑,1,   Telomerase↓,1,   TNF-α↓,1,   TrxR1↓,1,   TumCCA↓,1,   TumCCA↑,1,   TumCG↓,1,   TumMeta↓,1,   VEGF↓,2,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 53

Results for Effect on Normal Cells:
BioAv?,1,   BioAv↑,1,   Half-Life∅,1,   ROS↓,1,   toxicity∅,1,  
Total Targets: 5

Scientific Paper Hit Count for: RadioS, RadioSensitizer
3 Sulforaphane (mainly Broccoli)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:1107  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page