condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
1732- SFN,    Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, SUM159 - in-vivo, NA, NA
TumCD↑, reduced the size and number of primary mammospheres by 8~125-fold and 45%~75% (P < 0.01), respectively.
CSCs↓, Sulforaphane eliminated breast CSCs in vivo,
Wnt↓, Sulforaphane inhibits breast CSCs and down-regulates Wnt/β-catenin self-renewal pathway
β-catenin/ZEB1↓,
*BioAv↑, Sulforaphane was found to be converted from glucoraphanin, a major glucosinolate in broccoli/broccoli sprouts
angioG↓, Sulforaphane was also shown to suppress angiogenesis and metastasis by down-regulating VEGF, HIF-1α, MMP-2 and MMP-9 (4).
VEGF↓,
Hif1a↓,
MMP2↓,
MMP9↓,
Casp3↑,
*Half-Life∅, Plasma concentrations of sulforaphane equivalents peaked 0.94~2.27 μM in humans 1 hr after a single dose of 200 μmol broccoli sprout isothiocyanates (mainly sulforaphane)

1729- SFN,    Discovery and development of sulforaphane as a cancer chemopreventive phytochemical
- Review, Nor, NA
eff↑, but mild heating of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
angioG↓,
VEGF↓,
MMP9↓,
MMP2↓,

1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, Most clinical trials utilize doses of GFN ranging from 25 to 800 μmol , translating to about 65–2105 g raw broccoli or 3/4 to 23 cups of raw broccoli.
eff↝, SFN-rich powders have been made by drying out broccoli sprout
IL1β↓,
IL6↓,
IL12↓,
TNF-α↓,
COX2↓,
CXCR4↓,
MPO↓,
HSP70/HSPA5↓,
HSP90↓,
VCAM-1↓,
IKKα↓,
NF-kB↓,
HO-1↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Cyt‑c↑,
Diablo↑,
CHOP↑,
survivin↓,
XIAP↓,
p38↑,
Fas↑,
PUMA↑,
VEGF↓,
Hif1a↓,
Twist↓,
Zeb1↓,
Vim↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Snail↓,
CD44↓,
cycD1↓,
cycA1↓,
CycB↓,
cycE↓,
CDK4↓,
CDK6↓,
p50↓,
P53↑,
P21↑,
GSH↑,
SOD↑,
GSTs↑,
mTOR↓,
Akt↓,
PI3K↓,
β-catenin/ZEB1↓,
IGF-1↓,
cMyc↓,

1725- SFN,    Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway
- Review, Var, NA
*toxicity∅, Sulforaphane (SFN), a compound derived from cruciferous vegetables that has been shown to be safe and nontoxic, with minimal/no side effects
AntiCan↑, such as anticancer and antioxidant activities.
antiOx↑,
NRF2↑, FN also upregulates a series of cytoprotective genes by activating nuclear factor erythroid-2- (NF-E2-) related factor 2 (Nrf2), a critical transcription factor activated in response to oxidative stress;
DNMTs↓, SFN can reverse such epigenetic alterations in cancers by targeting DNA methyltransferases (DNMTs), histone deacetyltransferases (HDACs)
HDAC↓,
Hif1a↓, By suppressing the expression and activity of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), SFN inhibited the angiogenesis and metastasis of ovarian and colon cancers
VEGF↓,
P21↑, 15 μM SFN treatment caused reexpression of p21WAF1/CIP1 due to reduced expression of class I and II HDACs
TumCCA↑, resulted in cell cycle arrest
ac‑H3↑, upregulation of acetylated histone H3 and H4
ac‑H4↑,
DNAdam↑, SFN induced DNA damage
Dose↝, To achieve the effective inhibition of HDAC activity, it was reported that the concentration of SFN used in vitro experiments was from 3 to 15 μM, a single oral dose of 10 μmol in mice, and 68 g broccoli sprouts in human

3192- SFN,    Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention
- in-vitro, Pca, PC3
Sp1/3/4↓, Sp1 protein was significantly decreased by SFN treatment in prostate cancer cells . Because SFN decreased the expression of Sp1, and to a lesser extent Sp3
selectivity↑, SFN alters gene expression differentially in normal and cancer cells with key targets in chemopreventive processes, making it a promising dietary anti-cancer agent.
NRF2↑, through the induction of phase 2 enzymes via Keap1-Nrf2 signaling
HDAC↓, SFN also inhibits the activity and/or expression of genes that regulate epigenetic mechanisms including histone deactylases (HDACs) and DNA methyltransferases (DNMTs) in cancer cells
DNMTs↓,
TumCCA↑, 15 μM SFN treatment induces cell cycle arrest at the G1 phase and only modestly increases apoptosis
selectivity↑, Normal prostate epithelial cells (PREC) do not undergo cell cycle arrest or apoptosis in response to this SFN treatment
HO-1↑, In all cell lines and time points, HO1 and NQO1 were identified as significantly upregulated by SFN
NQO1↑,
CDK2↓, MX non-receptor tyrosine kinase (BMX), cyclin-dependent kinase 2 (CDK2), and polo-like kinase 1 (PLK1) had decreased expression with SFN treatment
TumCP↓, suppression of Sp1 expression decreased prostate cancer cells proliferation.
BID↑, SFN treatment produced a significant increase in the expression of the apoptosis related genes Bid, Smac/Diablo, and ICAD only in PC-3 cells (
Smad1↑,
Diablo↑,
ICAD↑,
Cyt‑c↑, It also increased the expression of cytochrome c, c-IAP1, and HSP27 in PC-3 cells while it decreased expression in PREC cells.
IAP1↑,
HSP27↑,
*Cyt‑c↓,
*IAP1↓,
*HSP27↓,
survivin↓, In these studies, inhibition of Sp1 is associated with inhibition of the cancer promoting genes survivin, CDK4, VEGF and the androgen receptor.
CDK4↓,
VEGF↓,
AR↓,

1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓,
ac‑H3↑,
ChemoSen↑, SFN synergistically augmented the GEM-mediated attenuation of cell viability and proliferation
tumCV↓,
TumCP↓,
TumCCA↑, G2/M cell cycle arrest
Apoptosis↑,
cl‑Casp3↑,
TumCI↓,
VEGF↓, VEGFA
VEGFR2↓,
Hif1a↓,
eNOS↓,
EMT?, SFN effectively inhibited the GEM-mediated induction of epithelial–mesenchymal transition (EMT)
TumCG↓,
Ki-67↓,
TUNEL↑, increased TUNEL+ apoptotic cells
P21↑,
p‑Chk2↑,
CDC25↓, decreased p-Cdc25C
BAX↑,
*ROS↓, SFN is also known to exert anti-oxidative effects via Nrf2 activation. in vivo study, optimization is performed by evaluating the anti-oxidative property of SFN in the liver.
NQO1?, identified 50 mg/kg/day as the minimal dose that significantly induced these anti-oxidative genes

963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓,
VEGF↓,
angioG↓,
Akt∅, AKT and ERK signaling pathway is not involved in downregulation of HIF-1α protein by sulforaphane under hypoxic conditions
ERK∅,

1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, RAW: higher amounts were detected when broccoli were eaten raw (bioavailability equal to 37%), compared to the cooked broccoli (bioavailability 3.4%)
HDAC↓, Sulforaphane is able to down-regulate HDAC activity and induce histone hyper-acetylation in tumor cell
TumCCA↓, Sulforaphane induces cell cycle arrest in G1, S and G2/M phases,
eff↓, in leukemia stem cells, sulforaphane potentiates imatinib effect through inhibition of the Wnt/β-catenin functions
Wnt↓,
β-catenin/ZEB1↓,
Casp12?, inducing caspases activation
Bcl-2↓,
cl‑PARP↑,
Bax:Bcl2↑, unbalancing the ratio Bax/Bcl-2
IAP1↓, down-regulating IAP family proteins
Casp3↑,
Casp9↑,
Telomerase↓, In Hep3B cells, sulforaphane reduces telomerase activity
hTERT↓, inhibition of hTERT expression;
ROS?, increment of ROS, induced by this compound, is essential for the downregulation of transcription and of post-translational modification of hTERT in suppression of telomerase activity
DNMTs↓, (2.5 - 10 μM) represses hTERT by impacting epigenetic pathways, in particular through decreased DNA methyltransferases activity (DNMTs)
angioG↓, inhibit tumor development through regulation of angiogenesis
VEGF↓,
Hif1a↓,
cMYB↓,
MMP1↓, inhibition of migration and invasion activities induced by sulforaphane in oral carcinoma cell lines has been associated to the inhibition of MMP-1 and MMP-2
MMP2↓,
MMP9↓,
ERK↑, inhibits invasion by activating ERK1/2, with consequent upregulation of E-cadherin (an invasion inhibitor)
E-cadherin↑,
CD44↓, downregulation of CD44v6 and MMP-2 (invasion promoters)
MMP2↓,
eff↑, ombination of sulforaphane and quercetin synergistically reduces the proliferation and migration of melanoma (B16F10) cells
IL2↑, induces upregulation of IL-2 and IFN-γ
IFN-γ↑,
IL1β↓, downregulation of IL-1beta, IL-6, TNF-α, and GM-CSF
IL6↓,
TNF-α↓,
NF-kB↓, sulforaphane inhibits the phorbol ester induction of NF-κB, inhibiting two pathways, ERK1/2 and NF-κB
ERK↓,
NRF2↑, At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2.
RadioS↑, sulforaphane could be used as a radio-sensitizing agent in prostate cancer if clinical trials will confirm the pre-clinical results.
ChemoSideEff↓, chemopreventive effects of sulforaphane

110- SFN,    Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway
- in-vivo, PC, NA
HH↓,
Smo↓,
Gli1↓,
GLI2↓,
Shh↓,
VEGF↓,
PDGFRA↓,
EMT↓,
Zeb1↓,
Bcl-2↓,
XIAP↓,
E-cadherin↑,
OCT4↓,

1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, current evidence supporting the neuroprotective and anticancer effects of SFN
AntiCan↑,
NRF2↑, neuroprotective effects through the activation of the Nrf2 pathway
HDAC↓, histone deacetylase was inhibited after human subjects ingested 68 g of broccoli sprouts
eff↑, sensitize cancer cells to chemotherapy
*ROS↓, protecting neurons [14] and microglia [15] against oxidative stress
neuroP↑, neuroprotective effects in Alzheimer’s disease (AD)
HDAC↓, capacity as a histone deacetylase (HDAC) inhibitor
*toxicity∅, normal cells are relatively resistant to SFN-induced cell death
BioAv↑, SFN has good bioavailability; it can reach high intracellular and plasma concentrations
eff↓, However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window
cycD1↓, in breast cancer
CDK4↓, in breast cancer
p‑RB1↓, in breast cancer
Glycolysis↓, in prostate cancer
miR-30a-5p↑, ovarian cancer
TumCCA↑, gastric cancer
TumCG↓,
TumMeta↓,
eff↑, SFN emerged as a critical enhancer of ST’s efficacy by suppressing resistance in RCC cells, offering a potent approach to overcome ST monotherapy limitations.
ChemoSen↑, SFN may improve the effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them
RadioS↑, SFN may help protect healthy cells and tissues from the harmful effects of radiation
CardioT↓, Several studies have demonstrated the protective role of SFN in cardiotoxicity
angioG↓, In colon cancers, SFN blocks cells’ progression and angiogenesis by inhibiting HIF-1α and VEGF expression
Hif1a↓,
VEGF↓,
*BioAv?, SFN is well absorbed in the intestine, with an absolute bioavailability of approximately 82%.
*Half-Life∅, In rats, after an oral dose of 50 μmol of SFN, the plasma concentration of SFN can peak at 20 μM at 4 h and decline with a half-life of about 2.2 h


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Akt∅,1,   angioG↓,5,   AntiCan↑,2,   antiOx↑,1,   Apoptosis↑,1,   AR↓,1,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,2,   BID↑,1,   BioAv↑,1,   CardioT↓,1,   Casp12?,1,   Casp3↑,3,   cl‑Casp3↑,1,   Casp7↑,1,   Casp8↑,1,   Casp9↑,2,   CD44↓,2,   CDC25↓,1,   CDK2↓,1,   CDK4↓,3,   CDK6↓,1,   ChemoSen↑,2,   ChemoSideEff↓,1,   p‑Chk2↑,1,   CHOP↑,1,   cMYB↓,1,   cMyc↓,1,   COX2↓,1,   CSCs↓,1,   CXCR4↓,1,   cycA1↓,1,   CycB↓,1,   cycD1↓,2,   cycE↓,1,   Cyt‑c↑,2,   Diablo↑,2,   DNAdam↑,1,   DNMTs↓,3,   Dose↝,2,   E-cadherin↑,3,   eff↓,2,   eff↑,4,   eff↝,1,   EMT?,1,   EMT↓,1,   eNOS↓,1,   ERK↓,1,   ERK↑,1,   ERK∅,1,   Fas↑,1,   Gli1↓,1,   GLI2↓,1,   Glycolysis↓,1,   GSH↑,1,   GSTs↑,1,   ac‑H3↑,2,   ac‑H4↑,1,   HDAC↓,6,   HH↓,1,   Hif1a↓,7,   HO-1↑,2,   HSP27↑,1,   HSP70/HSPA5↓,1,   HSP90↓,1,   hTERT↓,1,   IAP1↓,1,   IAP1↑,1,   ICAD↑,1,   IFN-γ↑,1,   IGF-1↓,1,   IKKα↓,1,   IL12↓,1,   IL1β↓,2,   IL2↑,1,   IL6↓,2,   Ki-67↓,1,   miR-30a-5p↑,1,   MMP1↓,1,   MMP2↓,5,   MMP9↓,4,   MPO↓,1,   mTOR↓,1,   N-cadherin↓,1,   neuroP↑,2,   NF-kB↓,2,   NQO1?,1,   NQO1↑,1,   NRF2↑,4,   OCT4↓,1,   P21↑,3,   p38↑,1,   p50↓,1,   P53↑,1,   cl‑PARP↑,2,   PDGFRA↓,1,   PI3K↓,1,   PUMA↑,1,   RadioS↑,2,   p‑RB1↓,1,   ROS?,1,   selectivity↑,2,   Shh↓,1,   Smad1↑,1,   Smo↓,1,   Snail↓,1,   SOD↑,1,   Sp1/3/4↓,1,   survivin↓,2,   Telomerase↓,1,   TNF-α↓,2,   TumCCA↓,1,   TumCCA↑,4,   TumCD↑,1,   TumCG↓,2,   TumCI↓,1,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,1,   TUNEL↑,1,   Twist↓,1,   VCAM-1↓,1,   VEGF↓,10,   VEGFR2↓,1,   Vim↓,1,   Wnt↓,2,   XIAP↓,2,   Zeb1↓,2,   β-catenin/ZEB1↓,3,  
Total Targets: 131

Results for Effect on Normal Cells:
BioAv?,1,   BioAv↑,2,   Cyt‑c↓,1,   Half-Life∅,2,   HSP27↓,1,   IAP1↓,1,   ROS↓,2,   toxicity∅,2,  
Total Targets: 8

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
10 Sulforaphane (mainly Broccoli)
1 Gemcitabine (Gemzar)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page