condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Gli1, glioma-associated oncogene homolog 1: Click to Expand ⟱
Source:
Type: HH
Gli family zinc-finger transcription factors; GLI1‐dependent target genes (CyclinD1, Bcl‐2, Foxm1)

Glioma-associated oncogene homolog 1 (GLI1) is a transcription factor that plays a significant role in the Hedgehog signaling pathway, which is crucial for cell growth, differentiation, and tissue patterning during embryonic development.
GLI1 can promote tumor growth and survival by regulating the expression of genes involved in cell proliferation, apoptosis, and angiogenesis. Its overexpression has been associated with aggressive tumor behavior and poor prognosis in several cancer types.
ts overexpression is often associated with aggressive tumor behavior, poor prognosis, and resistance to therapy


Scientific Papers found: Click to Expand⟱
1733- SFN,    Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal
- in-vitro, PC, PanCSC - in-vitro, Nor, HPNE - in-vitro, Nor, HNPSC
CSCs↓, In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN
Shh↓, SFN inhibited the components of Shh pathway and Gli transcriptional activity
Gli↓,
Nanog↓, suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4) as well as PDGFRα and Cyclin D1
OCT4↓,
PDGFRA↓,
cycD1↑,
Apoptosis↑, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases
Casp↑,
Smo↓, SFN inhibited the expression of Smo, Gli1 and Gli2.
Gli1↓,
GLI2↓,
Bcl-2↓, SFN induced apoptosis in pancreatic CSCs by inhibiting Bcl-2 expression and through the activation of caspase 3/7
Casp3↑,
Casp7↑,

1731- SFN,    Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts
- Review, Var, NA
CSCs↓, A number of studies have indicated that sulforaphane may target CSCs
ChemoSen↑, Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results.
NF-kB↓, downregulation of NF-kB activity by sulforaphane
Shh↓, Inhibits SHH pathway (Smo, Gli1, Gli2)
Smo↓,
Gli1↓,
GLI2↓,
PI3K↓, Inhibits PI3K/AKT pathway
Wnt↓, Inhibits Wnt/b-catenin pathway
β-catenin/ZEB1↓,
Nanog↓, sulforaphane was found to reduce the expression of SHH pathway components, as well as downstream target genes (e.g.,Nanog, Oct-4, VEGF and ZEB-1)
COX2↓, han et al. suggested that sulforaphane inhibited the EMT process via the COX-2/MMP2,9/ZEB1, Snail and miR-200c/ZEB1 pathways,
Zeb1↓,
Snail↓,
ChemoSideEff↓, More importantly, the combination therapy abolished tumor-initiating potential in vivo, without inducing additional side effects
eff↑, Broccoli sprouts contain approximately 20-times more glucoraphanin than broccoli, which represents typically 74% of all glucosinolates in the sprouts
*BioAv↑, Again, the bioavailability of sulforaphane from broccoli sprouts or broccoli sprout preparations heavily relies on the presence of plant myrosinase.

3197- SFN,    Sulforaphane Inhibits Self-renewal of Lung Cancer Stem Cells Through the Modulation of Polyhomeotic Homolog 3 and Sonic Hedgehog Signaling Pathways
- in-vitro, Lung, A549 - in-vitro, Lung, H460
TumCP↓, SFN inhibited the proliferation of lung cancer cells and lung cancer stem cells simultaneously.
CSCs↓,
Shh↓, SFN inhibited the activity of PHC3 and SHH signaling pathways in the lung cancer stem cells
Smo↓, SFN can obviously reduce the mRNA and protein expression of ShhSmo and Gli1 in CD133-positive cells as compared to CD133-negative cells
Gli1↓,

2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells
TumCG↓,
TumCI↓,
TumMeta↓,
glucoNG↓, Additionally, it can inhibit BC gluconeogenesis
ChemoSen↑, demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens.
TumCCA↑, SFN can block the cell cycle in G2/M phase, upregulate the expression of Caspase3/7 and PARP cleavage, and downregulate the expression of Survivin, EGFR and HER2/neu
Casp3↑,
Casp7↑,
cl‑PARP↑,
survivin↓,
EGFR↓,
HER2/EBBR2↓,
ATP↓, SFN inhibits the production of ATP by inhibiting glycolysis and mitochondrial oxidative phosphorylation in BC cells in a dose-dependent manner
Glycolysis↓,
mt-OXPHOS↓,
AKT1↓, dysregulation of glucose metabolism by inhibiting the AKT1-HK2 axis
HK2↓,
Hif1a↓, Sulforaphane inhibits glycolysis by down-regulating hypoxia-induced HIF-1α
ROS↑, SFN can upregulate ROS production and Nrf2 activity
NRF2↑,
EMT↓, inhibiting EMT process through Cox-2/MMP-2, 9/ ZEB1 and Snail and miR-200c/ZEB1 pathways
COX2↓,
MMP2↓,
MMP9↓,
Zeb1↓,
Snail↓,
HDAC↓, FN modulates the histone status in BC cells by regulating specific HDAC and HATs,
HATs↓,
MMP↓, SFN upregulates ROS production, induces mitochondrial oxidative damage, mitochondrial membrane potential depolarization, cytochrome c release
Cyt‑c↓,
Shh↓, SFN significantly lowers the expression of key components of the SHH pathway (Shh, Smo, and Gli1) and inhibits tumor sphere formation, thereby suppressing the stemness of cancer cells
Smo↓,
Gli1↓,
BioAv↝, SFN is unstable in aqueous solutions and at high temperatures, sensitive to oxygen, heat and alkaline conditions, with a decrease in quantity of 20% after cooking, 36% after frying, and 88% after boiling
BioAv↝, It has been reported that the ability of individuals to use gut myrosinase to convert glucoraphanin into SFN varies widely
Dose↝, Excitingly, it has been reported that daily oral administration of 200 μM SFN in melanoma patients can achieve plasma levels of 655 ng/mL with good tolerance

111- SFN,    Sulforaphene Interferes with Human Breast Cancer Cell Migration and Invasion through Inhibition of Hedgehog Signaling
- in-vitro, BC, SUM159
HH↓,
Gli1↓,
MMP2↓,
MMP9↓,

110- SFN,    Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway
- in-vivo, PC, NA
HH↓,
Smo↓,
Gli1↓,
GLI2↓,
Shh↓,
VEGF↓,
PDGFRA↓,
EMT↓,
Zeb1↓,
Bcl-2↓,
XIAP↓,
E-cadherin↑,
OCT4↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
AKT1↓,1,   Apoptosis↑,2,   ATP↓,1,   Bcl-2↓,2,   BioAv↝,2,   Casp↑,1,   Casp3↑,2,   Casp7↑,2,   ChemoSen↑,2,   ChemoSideEff↓,1,   COX2↓,2,   CSCs↓,3,   cycD1↑,1,   Cyt‑c↓,1,   Dose↝,1,   E-cadherin↑,1,   eff↑,1,   EGFR↓,1,   EMT↓,2,   Gli↓,1,   Gli1↓,6,   GLI2↓,3,   glucoNG↓,1,   Glycolysis↓,1,   HATs↓,1,   HDAC↓,1,   HER2/EBBR2↓,1,   HH↓,2,   Hif1a↓,1,   HK2↓,1,   MMP↓,1,   MMP2↓,2,   MMP9↓,2,   Nanog↓,2,   NF-kB↓,1,   NRF2↑,1,   OCT4↓,2,   mt-OXPHOS↓,1,   cl‑PARP↑,1,   PDGFRA↓,2,   PI3K↓,1,   ROS↑,1,   Shh↓,5,   Smo↓,5,   Snail↓,2,   survivin↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCI↓,1,   TumCP↓,1,   TumMeta↓,1,   VEGF↓,1,   Wnt↓,1,   XIAP↓,1,   Zeb1↓,3,   β-catenin/ZEB1↓,1,  
Total Targets: 56

Results for Effect on Normal Cells:
BioAv↑,1,  
Total Targets: 1

Scientific Paper Hit Count for: Gli1, glioma-associated oncogene homolog 1
6 Sulforaphane (mainly Broccoli)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:124  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page