condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Cyt‑c, cyt-c Release into Cytosol: Click to Expand ⟱
Source:
Type:
Cytochrome c
** The term "release of cytochrome c" ** an increase in level for the cytosol.
Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis.

The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis.
In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death.
Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation.
Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol.
The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death.

On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer.
On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells.
Overexpressed in Breast, Lung, Colon, and Prostrate.
Underexpressed in Ovarian, and Pancreatic.


Scientific Papers found: Click to Expand⟱
1735- SFN,    Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane
- in-vitro, GBM, T98G - in-vitro, GBM, U87MG
Apoptosis↑, confirmed apoptosis in glioblastoma cells treated with sulforaphane
Ca+2↑, Increase in intracellular free Ca2+ was detected by fura-2 assay, suggesting activation of Ca2+-dependent pathways for apoptosis.
Bax:Bcl2↑, increased Bax:Bcl-2 ratio
cal2↑, Upregulation of calpain, a Ca2+-dependent cysteine protease, activated caspase-12 that in turn caused activation of caspase-9.
Casp12↑,
Casp9↑,
Cyt‑c↑, cytochrome c was released from mitochondria to cytosol

1730- SFN,    Sulforaphane: An emergent anti-cancer stem cell agent
- Review, Var, NA
BioAv↓, When exposed to high temperatures during meal preparation, myrosinase can be degraded, lose its function, and subsequently compromise the synthesis of SFN.
BioAv↑, eating raw cruciferous vegetables, instead of heating them can significantly improve the biodisponibility of SFN and its subsequent beneficial effects.
GSTA1↑, induction of Phase II enzymes [glutathione S-transferase (GST)
P450↓, (cytochrome P450, CYP) inhibition
TumCCA↑, herb-derived agent can also promote cell cycle arrest and apoptosis by regulating different signaling pathways including Nuclear Factor erythroid Related Factor 2 (Nrf2)-Keap1 and NF-κB.
HDAC↓, modulate the activity of some epigenetic factors, such as histone deacetylases (HDAC),
P21↑, upregulation of p21 and p27,
p27↑,
DNMT1↓, SFN was able to decrease the expression of DNMT1 and DNMT3 in LnCap prostate cancer cells
DNMT3A↓,
cycD1↑, reduce methylation in Cyclin D2 promoter, thus inducing Cyclin D2 gene expression in those cells
DNAdam↑, SFN induced DNA damage, enhanced Bax expression and the release of cytochrome C followed by apoptosis
BAX↑,
Cyt‑c↑,
Apoptosis↑,
ROS↑, SFN increased reactive oxygen species (ROS), apoptosis-inducing factor (AIF)
AIF↑,
CDK1↑,
Casp3↑, activation of caspase-3, -8, and -9
Casp8↑,
Casp9↑,
NRF2↑, SFN significantly activated the major antioxidant marker Nrf2 and decreased NFκB, TNF-α, IL-1β
NF-kB↓,
TNF-α↓,
IL1β↓,
CSCs↓, SFN, have attracted attention due to their anti-CSC effect
CD133↓,
CD44↓,
ALDH↓,
Nanog↓,
OCT4↓,
hTERT↓,
MMP2↓,
EMT↓, SFN was reported to inhibit EMT and metastasis in the NSCLC, the cell lines H1299
ALDH1A1↓, ALDH1A1), Wnt3, and Notch4, other CSC-related genes inhibited by SFN treatment
Wnt↓,
NOTCH↓, SFN can inhibit aberrantly activated embryonic pathways in CSCs, including Sonic Hedgehog (SHH), Wnt/β-catenin, Cripto-1 (CR-1), and Notch.
ChemoSen↑, These results suggest that the antioxidant properties of SFN do not impact the cytotoxicity of antineoplastic drugs, but on the contrary, seems to improve it.
*Ki-67↓, Ki-67 and HDAC3 levels significantly decreased in benign breast tissues, and there was also a reduction in HDAC activity in blood cells
*HDAC3↓,
*HDAC↓,

1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, Most clinical trials utilize doses of GFN ranging from 25 to 800 μmol , translating to about 65–2105 g raw broccoli or 3/4 to 23 cups of raw broccoli.
eff↝, SFN-rich powders have been made by drying out broccoli sprout
IL1β↓,
IL6↓,
IL12↓,
TNF-α↓,
COX2↓,
CXCR4↓,
MPO↓,
HSP70/HSPA5↓,
HSP90↓,
VCAM-1↓,
IKKα↓,
NF-kB↓,
HO-1↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Cyt‑c↑,
Diablo↑,
CHOP↑,
survivin↓,
XIAP↓,
p38↑,
Fas↑,
PUMA↑,
VEGF↓,
Hif1a↓,
Twist↓,
Zeb1↓,
Vim↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Snail↓,
CD44↓,
cycD1↓,
cycA1↓,
CycB↓,
cycE↓,
CDK4↓,
CDK6↓,
p50↓,
P53↑,
P21↑,
GSH↑,
SOD↑,
GSTs↑,
mTOR↓,
Akt↓,
PI3K↓,
β-catenin/ZEB1↓,
IGF-1↓,
cMyc↓,

1723- SFN,    Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review
- Review, Var, NA
*NRF2↑, activation of nuclear factor erythroid 2-related factor 2 (Nrf2). In this way, the oxidative stress and other toxicants are diminished
ROS↑, Cytotoxic effects of SFN are delivered via complex mechanisms where ROS generation results in improving apoptosis
MMP↓, ROS generation is also followed by mitochondrial membrane potential disruption that results in cytochrome c cytosolic release cleaving the poly-ADP-ribose polymerase and apoptosi
Cyt‑c↑,
cl‑PARP↑,
Apoptosis↑,
AMPK↑, AMPK signaling activated by SFN, high concentrations of ROS are produced
GSH↓, SFN-induced ROS generation also results in depletion of GSH levels

1722- SFN,    Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems
- Review, Var, NA
TumCCA↑, arresting cell cycle in the G2/M and G1 phase
CYP1A1↓, Sulforaphane inhibits CYP1A1 and CYP3A4 and decease the activity of CYP3A4
CYP3A4↓,
Cyt‑c↑, release of cytochrome C from the mitochondria
Casp9↑,
Apoptosis↑,
ROS↑, generation of reactive oxygen species (ROS), and mitogen-activated protein kinases (MAPK)
MAPK↑,
P53↑, sulforaphane treatment increased p53 protein expression with associated increase in the protein levels of Bax
BAX↑,
ChemoSen↑, Combination therapies target multiple cell survival pathways, which results in synergism
HDAC↓, HDACi Histone deacetylase inhibition
GSH↓, fig 3
HO-1↑, They found that the protective effect of sulforaphane is mediated by the activation of the Keap1/Nrf2/ARE pathway, which consequently induce HO-1

3192- SFN,    Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention
- in-vitro, Pca, PC3
Sp1/3/4↓, Sp1 protein was significantly decreased by SFN treatment in prostate cancer cells . Because SFN decreased the expression of Sp1, and to a lesser extent Sp3
selectivity↑, SFN alters gene expression differentially in normal and cancer cells with key targets in chemopreventive processes, making it a promising dietary anti-cancer agent.
NRF2↑, through the induction of phase 2 enzymes via Keap1-Nrf2 signaling
HDAC↓, SFN also inhibits the activity and/or expression of genes that regulate epigenetic mechanisms including histone deactylases (HDACs) and DNA methyltransferases (DNMTs) in cancer cells
DNMTs↓,
TumCCA↑, 15 μM SFN treatment induces cell cycle arrest at the G1 phase and only modestly increases apoptosis
selectivity↑, Normal prostate epithelial cells (PREC) do not undergo cell cycle arrest or apoptosis in response to this SFN treatment
HO-1↑, In all cell lines and time points, HO1 and NQO1 were identified as significantly upregulated by SFN
NQO1↑,
CDK2↓, MX non-receptor tyrosine kinase (BMX), cyclin-dependent kinase 2 (CDK2), and polo-like kinase 1 (PLK1) had decreased expression with SFN treatment
TumCP↓, suppression of Sp1 expression decreased prostate cancer cells proliferation.
BID↑, SFN treatment produced a significant increase in the expression of the apoptosis related genes Bid, Smac/Diablo, and ICAD only in PC-3 cells (
Smad1↑,
Diablo↑,
ICAD↑,
Cyt‑c↑, It also increased the expression of cytochrome c, c-IAP1, and HSP27 in PC-3 cells while it decreased expression in PREC cells.
IAP1↑,
HSP27↑,
*Cyt‑c↓,
*IAP1↓,
*HSP27↓,
survivin↓, In these studies, inhibition of Sp1 is associated with inhibition of the cancer promoting genes survivin, CDK4, VEGF and the androgen receptor.
CDK4↓,
VEGF↓,
AR↓,

2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells
TumCG↓,
TumCI↓,
TumMeta↓,
glucoNG↓, Additionally, it can inhibit BC gluconeogenesis
ChemoSen↑, demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens.
TumCCA↑, SFN can block the cell cycle in G2/M phase, upregulate the expression of Caspase3/7 and PARP cleavage, and downregulate the expression of Survivin, EGFR and HER2/neu
Casp3↑,
Casp7↑,
cl‑PARP↑,
survivin↓,
EGFR↓,
HER2/EBBR2↓,
ATP↓, SFN inhibits the production of ATP by inhibiting glycolysis and mitochondrial oxidative phosphorylation in BC cells in a dose-dependent manner
Glycolysis↓,
mt-OXPHOS↓,
AKT1↓, dysregulation of glucose metabolism by inhibiting the AKT1-HK2 axis
HK2↓,
Hif1a↓, Sulforaphane inhibits glycolysis by down-regulating hypoxia-induced HIF-1α
ROS↑, SFN can upregulate ROS production and Nrf2 activity
NRF2↑,
EMT↓, inhibiting EMT process through Cox-2/MMP-2, 9/ ZEB1 and Snail and miR-200c/ZEB1 pathways
COX2↓,
MMP2↓,
MMP9↓,
Zeb1↓,
Snail↓,
HDAC↓, FN modulates the histone status in BC cells by regulating specific HDAC and HATs,
HATs↓,
MMP↓, SFN upregulates ROS production, induces mitochondrial oxidative damage, mitochondrial membrane potential depolarization, cytochrome c release
Cyt‑c↓,
Shh↓, SFN significantly lowers the expression of key components of the SHH pathway (Shh, Smo, and Gli1) and inhibits tumor sphere formation, thereby suppressing the stemness of cancer cells
Smo↓,
Gli1↓,
BioAv↝, SFN is unstable in aqueous solutions and at high temperatures, sensitive to oxygen, heat and alkaline conditions, with a decrease in quantity of 20% after cooking, 36% after frying, and 88% after boiling
BioAv↝, It has been reported that the ability of individuals to use gut myrosinase to convert glucoraphanin into SFN varies widely
Dose↝, Excitingly, it has been reported that daily oral administration of 200 μM SFN in melanoma patients can achieve plasma levels of 655 ng/mL with good tolerance

1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, SFN’s role as a natural HDAC-inhibitor is highly relevant
eff↓, SFN exerts stronger anti-proliferative effects on bladder cancer cell lines under hypoxia, compared to normoxic conditions
TumW↓, mice, SFN (52 mg/kg body weight) for 2 weeks reduced tumor weight by 42%
TumW↓, In another study a 63% inhibition was noted when tumor bearing mice were treated with SFN (12 mg/kg body weight) for 5 weeks
angioG↓,
*toxicity↓, In both investigations, the administration of SFN did not evoke apparent toxicity
GutMicro↝, SFN may protect against chemical-induced bladder cancer by normalizing the composition of gut microbiota and repairing pathophysiological destruction of the gut barrier,
AntiCan↑, A prospective study involving nearly 50,000 men indicated that high cruciferous vegetable consumption may reduce bladder cancer risk
ROS↑, Evidence shows that SFN upregulates the ROS level in T24 bladder cancer cells to induce apoptosis
MMP↓,
Cyt‑c↑,
Bax:Bcl2↑,
Casp3↑,
Casp9↑,
Casp8∅,
cl‑PARP↑,
TRAIL↑, ROS generation promotes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity
DR5↑,
eff↓, Blockade of ROS generation inhibited apoptotic activity and prevented Nrf2 activation in cells treated with SFN, pointing to a direct effect of ROS on apoptosis
NRF2↑, SFN potently inhibits carcinogenesis via activation of the Nrf2 pathway
ER Stress↑, endoplasmic reticulum stress evoked by SFN
COX2↓, downregulates COX-2 in T24 cells
EGFR↓, downregulation of both the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 (HER2/neu
HER2/EBBR2↓,
ChemoSen↑, gemcitabine/cisplatin and SFN triggered pathway alterations in bladder cancer may open new therapeutic strategies, including a combined treatment regimen to cause additive effects.
NF-kB↓,
TumCCA?, cell cycle at the G2/M phase
p‑Akt↓,
p‑mTOR↓,
p70S6↓,
p19↑, p19 and p21, are elevated under SFN
P21↑,
CD44↓, CD44s expression correlates with induced intracellular levels of ROS in bladder cancer cells variants v3–v7 on bladder cancer cells following SFN exposure

1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓,
Apoptosis↑,
Cyt‑c↑,
Bax:Bcl2↑, Bcl-2/Bax dysregulation
Casp9↑,
Casp3↑,
Casp8∅,
cl‑PARP↑,
ROS↑, sulforaphane triggered reactive oxygen species (ROS) generation
MMP↓,
eff↓, blockage of sulforaphane-induced loss of mitochondrial membrane potential and apoptosis, was strongly attenuated by the ROS scavenger N-acetyl-L-cysteine.
ER Stress↑,
p‑NRF2↑, accumulation of phosphorylated Nrf2 proteins in the nucleus
HO-1↑, induction of heme oxygenase-1 expression

1481- SFN,  docx,    Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
ChemoSen↑, SFN:DCT combination reduced cell viability to 50%
Casp3↑,
ROS↑, see figure 4
Casp8↑,
Cyt‑c↑, see figure 4
Glycolysis↓, see figure 4
GSH↓, see figure 4
GSH/GSSG↓, GSH/GSSG
*toxicity↓, SFN:DCT combination, administered at reduced doses, not only preserves efficacy but also minimizes toxicity

1480- SFN,    Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116
tumCV↓,
TumCCA↑, G2/M phase arrest
Apoptosis↑,
cycA1↑,
CycB↑,
CDC25↓, Cdc 25C
CDK1↓,
ROS↑, SFN induced the generation of reactive oxygen species (ROS)
eff↓, Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell
Cyt‑c↑,
AIF↑,
ER Stress↑,

1471- SFN,    ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells
- in-vitro, GC, AGS
TumCP↓,
Apoptosis↑,
TumCCA↑, G2/M phase
CycB↑,
P21↑,
p‑H3↑,
p‑AMPK↑,
eff↓, compound C, an AMPK inhibitor, significantly blocked sulforaphane-induced apoptosis
MMP↓,
Cyt‑c↑,
ROS↑, sulforaphane provoked the generation of intracellular ROS
eff↓, sulforaphane provoked the generation of intracellular ROS; especially when ROS production was blocked by antioxidant N-acetylcysteine, both AMPK activation and growth inhibition by sulforaphane were completely abolished

1468- SFN,    Cellular responses to dietary cancer chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
ROS↑,
DNAdam↑,
MMP↓,
Cyt‑c↑,
TumCCA↑, G2/M phase cell cycle arrest


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 13

Results for Effect on Cancer/Diseased Cells:
AIF↑,2,   Akt↓,1,   p‑Akt↓,1,   AKT1↓,1,   ALDH↓,1,   ALDH1A1↓,1,   AMPK↑,1,   p‑AMPK↑,1,   angioG↓,1,   AntiCan↑,1,   Apoptosis↑,8,   AR↓,1,   ATP↓,1,   BAX↑,2,   Bax:Bcl2↑,3,   BID↑,1,   BioAv↓,1,   BioAv↑,1,   BioAv↝,2,   Ca+2↑,1,   cal2↑,1,   Casp12↑,1,   Casp3↑,6,   Casp7↑,2,   Casp8↑,3,   Casp8∅,2,   Casp9↑,6,   CD133↓,1,   CD44↓,3,   CDC25↓,1,   CDK1↓,1,   CDK1↑,1,   CDK2↓,1,   CDK4↓,2,   CDK6↓,1,   ChemoSen↑,5,   CHOP↑,1,   cMyc↓,1,   COX2↓,3,   CSCs↓,1,   CXCR4↓,1,   cycA1↓,1,   cycA1↑,1,   CycB↓,1,   CycB↑,2,   cycD1↓,1,   cycD1↑,1,   cycE↓,1,   CYP1A1↓,1,   CYP3A4↓,1,   Cyt‑c↓,1,   Cyt‑c↑,12,   Diablo↑,2,   DNAdam↑,2,   DNMT1↓,1,   DNMT3A↓,1,   DNMTs↓,1,   Dose↝,2,   DR5↑,1,   E-cadherin↑,1,   eff↓,6,   eff↝,1,   EGFR↓,2,   EMT↓,2,   ER Stress↑,3,   Fas↑,1,   Gli1↓,1,   glucoNG↓,1,   Glycolysis↓,2,   GSH↓,3,   GSH↑,1,   GSH/GSSG↓,1,   GSTA1↑,1,   GSTs↑,1,   GutMicro↝,1,   p‑H3↑,1,   HATs↓,1,   HDAC↓,5,   HER2/EBBR2↓,2,   Hif1a↓,2,   HK2↓,1,   HO-1↑,4,   HSP27↑,1,   HSP70/HSPA5↓,1,   HSP90↓,1,   hTERT↓,1,   IAP1↑,1,   ICAD↑,1,   IGF-1↓,1,   IKKα↓,1,   IL12↓,1,   IL1β↓,2,   IL6↓,1,   MAPK↑,1,   MMP↓,6,   MMP2↓,3,   MMP9↓,2,   MPO↓,1,   mTOR↓,1,   p‑mTOR↓,1,   N-cadherin↓,1,   Nanog↓,1,   NF-kB↓,3,   NOTCH↓,1,   NQO1↑,1,   NRF2↑,4,   p‑NRF2↑,1,   OCT4↓,1,   mt-OXPHOS↓,1,   p19↑,1,   P21↑,4,   p27↑,1,   p38↑,1,   P450↓,1,   p50↓,1,   P53↑,2,   p70S6↓,1,   cl‑PARP↑,5,   PI3K↓,1,   PUMA↑,1,   ROS↑,10,   selectivity↑,2,   Shh↓,1,   Smad1↑,1,   Smo↓,1,   Snail↓,2,   SOD↑,1,   Sp1/3/4↓,1,   survivin↓,3,   TNF-α↓,2,   TRAIL↑,1,   TumCCA?,1,   TumCCA↑,7,   TumCG↓,1,   TumCI↓,1,   TumCP↓,2,   tumCV↓,2,   TumMeta↓,1,   TumW↓,2,   Twist↓,1,   VCAM-1↓,1,   VEGF↓,2,   Vim↓,1,   Wnt↓,1,   XIAP↓,1,   Zeb1↓,2,   β-catenin/ZEB1↓,1,  
Total Targets: 147

Results for Effect on Normal Cells:
Cyt‑c↓,1,   HDAC↓,1,   HDAC3↓,1,   HSP27↓,1,   IAP1↓,1,   Ki-67↓,1,   NRF2↑,1,   toxicity↓,2,  
Total Targets: 8

Scientific Paper Hit Count for: Cyt‑c, cyt-c Release into Cytosol
13 Sulforaphane (mainly Broccoli)
1 Docetaxel
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:77  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page