condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Akt, PKB-Protein kinase B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport.

Inhibitors:
-Curcumin: downregulate AKT phosphorylation and signaling.
-Resveratrol
-Quercetin: inhibit the PI3K/AKT pathway.
-Epigallocatechin Gallate (EGCG)
-Luteolin and Apigenin: inhibit AKT phosphorylation


Scientific Papers found: Click to Expand⟱
2445- SFN,    Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
TumCCA↑, SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence
P21↑,
p27↑,
NO↑, effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling
Akt↓,
ATP↓, decreased pools of ATP and AMPK activation, and autophagy induction
AMPK↑,
TumAuto↑,
DNMT1↓, decreased levels of DNA methyltransferases (DNMT1, DNMT3B)
HK2↓, A decrease in HK2 levels was observed in SFN-treated MDA-MB-231 cells
PKM2↓, and a decrease in PKM2 levels was noticed in SFN-treated MDA-MB-231 and SK-BR-3 cells
HDAC3↓, . In contrast, HDAC3 , HDAC4 , HDAC6 , HDAC7 , HDAC8 ), HDAC9 and HDAC10 (histone deacetylase 10) mRNA levels were decreased in SFN-treated MDA-MB-231 cells
HDAC4↓,
HDAC8↓,

1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, Most clinical trials utilize doses of GFN ranging from 25 to 800 μmol , translating to about 65–2105 g raw broccoli or 3/4 to 23 cups of raw broccoli.
eff↝, SFN-rich powders have been made by drying out broccoli sprout
IL1β↓,
IL6↓,
IL12↓,
TNF-α↓,
COX2↓,
CXCR4↓,
MPO↓,
HSP70/HSPA5↓,
HSP90↓,
VCAM-1↓,
IKKα↓,
NF-kB↓,
HO-1↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Cyt‑c↑,
Diablo↑,
CHOP↑,
survivin↓,
XIAP↓,
p38↑,
Fas↑,
PUMA↑,
VEGF↓,
Hif1a↓,
Twist↓,
Zeb1↓,
Vim↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Snail↓,
CD44↓,
cycD1↓,
cycA1↓,
CycB↓,
cycE↓,
CDK4↓,
CDK6↓,
p50↓,
P53↑,
P21↑,
GSH↑,
SOD↑,
GSTs↑,
mTOR↓,
Akt↓,
PI3K↓,
β-catenin/ZEB1↓,
IGF-1↓,
cMyc↓,

3195- SFN,    AKT1/HK2 Axis-mediated Glucose Metabolism: A Novel Therapeutic Target of Sulforaphane in Bladder Cancer
- in-vitro, Bladder, UMUC3
ATP↓, SFN strongly downregulates ATP production by inhibiting glycolysis and mitochondrial oxidative phosphorylation (OXPHOS).
Glycolysis↓,
OXPHOS↓,
HK2↓, SFN weaken the glycolytic flux by suppressing multiple metabolic enzymes, including hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH).
PDH↓,
AKT1↓, SFN decreases the level of AKT1 and p-AKT ser473 , especially in low-invasive UMUC3 cells.
p‑Akt↓,

1466- SFN,    Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway
- vitro+vivo, Thyroid, FTC-133
TumCP↓,
TumCCA↑, G2/M phase
Apoptosis↑,
TumCMig↓,
TumCI↓,
EMT↓,
Slug↓,
Twist↓,
MMP2↓,
MMP9↓,
TumCG↓,
p‑Akt↓,
P21↑,
ERK↑,
p38↑,
ROS↑, ROS was significantly induced in both FTC133 and K1 cells when cells were treated with 40 μM SFN for 4 h Several previous studies have shown that SFN induces ROS
*toxicity∅, we did not find significant effect of SFN on body weight and liver function of mice.
MMP↓,
eff↓, Like NAC, ASC treatment significantly attenuated anti-proliferative effect of SFN in these two cell lines

1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment
TumCCA↑, Sub-G1 cells
Apoptosis↑,
MMP↓,
BAX↑,
cl‑PARP↑,
Casp3↑,
Casp8↑,
Casp9↑,
ROS↑, combined treatment induced excessive generation of reactive oxygen species (ROS)
eff↓, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis.
PI3K↓,
Akt↓,
TrxR↓, treatment with either sulforaphane or auranofin alone at low concentrations weakly inhibit TrxR activity Combined treatment significantly reduced TrxR activity and cell viability
BAX↑,
Bcl-2∅,

1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, SFN’s role as a natural HDAC-inhibitor is highly relevant
eff↓, SFN exerts stronger anti-proliferative effects on bladder cancer cell lines under hypoxia, compared to normoxic conditions
TumW↓, mice, SFN (52 mg/kg body weight) for 2 weeks reduced tumor weight by 42%
TumW↓, In another study a 63% inhibition was noted when tumor bearing mice were treated with SFN (12 mg/kg body weight) for 5 weeks
angioG↓,
*toxicity↓, In both investigations, the administration of SFN did not evoke apparent toxicity
GutMicro↝, SFN may protect against chemical-induced bladder cancer by normalizing the composition of gut microbiota and repairing pathophysiological destruction of the gut barrier,
AntiCan↑, A prospective study involving nearly 50,000 men indicated that high cruciferous vegetable consumption may reduce bladder cancer risk
ROS↑, Evidence shows that SFN upregulates the ROS level in T24 bladder cancer cells to induce apoptosis
MMP↓,
Cyt‑c↑,
Bax:Bcl2↑,
Casp3↑,
Casp9↑,
Casp8∅,
cl‑PARP↑,
TRAIL↑, ROS generation promotes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity
DR5↑,
eff↓, Blockade of ROS generation inhibited apoptotic activity and prevented Nrf2 activation in cells treated with SFN, pointing to a direct effect of ROS on apoptosis
NRF2↑, SFN potently inhibits carcinogenesis via activation of the Nrf2 pathway
ER Stress↑, endoplasmic reticulum stress evoked by SFN
COX2↓, downregulates COX-2 in T24 cells
EGFR↓, downregulation of both the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 (HER2/neu
HER2/EBBR2↓,
ChemoSen↑, gemcitabine/cisplatin and SFN triggered pathway alterations in bladder cancer may open new therapeutic strategies, including a combined treatment regimen to cause additive effects.
NF-kB↓,
TumCCA?, cell cycle at the G2/M phase
p‑Akt↓,
p‑mTOR↓,
p70S6↓,
p19↑, p19 and p21, are elevated under SFN
P21↑,
CD44↓, CD44s expression correlates with induced intracellular levels of ROS in bladder cancer cells variants v3–v7 on bladder cancer cells following SFN exposure

963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓,
VEGF↓,
angioG↓,
Akt∅, AKT and ERK signaling pathway is not involved in downregulation of HIF-1α protein by sulforaphane under hypoxic conditions
ERK∅,

1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues.
tumCV↓,
Apoptosis↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
5HT↓, significantly reducing 5-HT secretion in carcinoid syndrome.
NRF2↑, AZ and SFN increased the expression of Nrf2 by 61% and 104%, respectively. Combination treatment further increased expression by 127%

1475- SFN,  Form,    Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway
- in-vitro, Cerv, HeLa
TumCP↓,
PI3K↓,
Akt↓,
mTOR↓,
eff↑, cytotoxicity of FN and SFN was determined to be around 23.7 µM and 26.92 µM, respectively. Combining FN and SFN causes considerable cytotoxicity in HeLa cells, with an IC50 of 21.6 µM
ROS↑, considerable ROS generation

1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, Sulforaphane enhanced the therapeutic potential of TRAIL in PC-3 cells and sensitized TRAIL-resistant LNCaP cells.
ROS↑,
MMP↓,
Casp3↑,
Casp9↑,
DR4↑,
DR5↑,
BAX↑,
Bak↑,
BIM↑,
NOXA↑,
Bcl-2↓,
Bcl-xL↓,
Mcl-1↓,
eff↓, quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against sulforaphane-induced ROS generation, mitochondrial membrane potential disruption, caspase-3 activation, and apoptosis.
TumCG↓,
TumCP↓,
eff↑, enhanced the antitumor activity of TRAIL.
NF-kB↓,
PI3K↓,
Akt↓,
MEK↓,
ERK↓,
angioG↓, combination of sulforaphane and TRAIL was more effective in inhibiting markers of angiogenesis and metastasis and activating FOXO3a transcription factor than single agent alone.
FOXO3↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
5HT↓,1,   Akt↓,6,   Akt∅,1,   p‑Akt↓,3,   AKT1↓,1,   AMPK↑,1,   angioG↓,3,   AntiCan↑,1,   Apoptosis↑,3,   ATP↓,2,   Bak↑,1,   BAX↑,3,   Bax:Bcl2↑,1,   Bcl-2↓,1,   Bcl-2∅,1,   Bcl-xL↓,1,   BIM↑,1,   Casp3↑,4,   Casp7↑,1,   Casp8↑,2,   Casp8∅,1,   Casp9↑,4,   CD44↓,2,   CDK4↓,1,   CDK6↓,1,   ChemoSen↑,1,   CHOP↑,1,   cMyc↓,1,   COX2↓,2,   CXCR4↓,1,   cycA1↓,1,   CycB↓,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,2,   Diablo↑,1,   DNMT1↓,1,   Dose↝,1,   DR4↑,1,   DR5↑,2,   E-cadherin↑,1,   eff↓,5,   eff↑,5,   eff↝,1,   EGFR↓,1,   EMT↓,1,   ER Stress↑,1,   ERK↓,1,   ERK↑,1,   ERK∅,1,   Fas↑,1,   FOXO3↑,1,   Glycolysis↓,1,   GSH↑,1,   GSTs↑,1,   GutMicro↝,1,   HDAC↓,1,   HDAC3↓,1,   HDAC4↓,1,   HDAC8↓,1,   HER2/EBBR2↓,1,   Hif1a↓,2,   HK2↓,2,   HO-1↑,1,   HSP70/HSPA5↓,1,   HSP90↓,1,   IGF-1↓,1,   IKKα↓,1,   IL12↓,1,   IL1β↓,1,   IL6↓,1,   Mcl-1↓,1,   MEK↓,1,   MMP↓,4,   MMP2↓,2,   MMP9↓,2,   MPO↓,1,   mTOR↓,3,   p‑mTOR↓,1,   N-cadherin↓,1,   NF-kB↓,3,   NO↑,1,   NOXA↑,1,   NRF2↑,2,   OXPHOS↓,1,   p19↑,1,   P21↑,5,   p27↑,1,   p38↑,2,   p50↓,1,   P53↑,1,   p70S6↓,1,   cl‑PARP↑,3,   PDH↓,1,   PI3K↓,5,   PKM2↓,1,   PUMA↑,1,   ROS↑,5,   Slug↓,1,   Snail↓,1,   SOD↑,1,   survivin↓,1,   TNF-α↓,1,   TRAIL↑,1,   TrxR↓,1,   TumAuto↑,1,   TumCCA?,1,   TumCCA↑,3,   TumCG↓,2,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,3,   tumCV↓,1,   TumW↓,2,   Twist↓,2,   VCAM-1↓,1,   VEGF↓,2,   Vim↓,1,   XIAP↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 121

Results for Effect on Normal Cells:
toxicity↓,1,   toxicity∅,1,  
Total Targets: 2

Scientific Paper Hit Count for: Akt, PKB-Protein kinase B
10 Sulforaphane (mainly Broccoli)
1 Auranofin
1 acetazolamide
1 Formononetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:4  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page