condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Hif1a, HIF1α/HIF1a: Click to Expand ⟱
Source:
Type:
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product)
-Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells
-HIF1A induces the expression of vascular endothelial growth factor (VEGF)
-High HIF-1α expression is associated with Poor prognosis
-Low HIF-1α expression is associated with Better prognosis

-Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism.
-Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis

Key mediators of aerobic glycolysis regulated by HIF-1α.
-GLUT-1 → regulation of the flux of glucose into cells.
-HK2 → catalysis of the first step of glucose metabolism.
-PKM2 → regulation of rate-limiting step of glycolysis.
-Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis.
-LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate;

HIF-1α Inhibitors:
-Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate).
-Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions.
-EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity.
-Emodin: reduce HIF-1α expression. (under hypoxia).
-Apigenin: inhibit HIF-1α accumulation.


Scientific Papers found: Click to Expand⟱
1734- SFN,    Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in Hypoxia
- in-vitro, Bladder, RT112
selectivity↑, sulforaphane, a natural chemical which was abundant in cruciferous vegetables, could suppress bladder cancer cells proliferation in hypoxia significantly stronger than in normoxia
TumCP↓,
Glycolysis↓, sulforaphane decreased glycolytic metabolism in a hypoxia microenvironment by downregulating hypoxia-induced HIF-1α and blocking HIF-1α t
Hif1a↓,

2406- SFN,    Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic Approach
- Review, Pca, NA
HK2↓, When TRAMP mice were given 6 μmol/mouse (1 mg/mouse) three times a week for 17–19 weeks, the prostate tumor expression of glycolysis-promoting enzymes such as (HKII), 2 (PKM2) and (LDHA) was decreased by 32–45%
PKM2↓,
LDHA↓,
Glycolysis↓, These results provide evidence that sulforaphane suppresses in vivo glycolysis in prostate cancer cells
LAMP2↑, The study shows that 10–20 μM of sulforaphane significantly increased lysosome-associated membrane protein 2 (LAMP2) in the cell lines
Hif1a↓, sulforaphane has been shown to suppress HIF-1α
DNAdam↓, SFN causes DNA damage and prevents DNA repair in prostate cancer cell
DNArepair↓,
Dose↝, 5 to 100 mg/kg of sulforaphane reduce tumors in animal models [ 5 , 19]. For a 70 kg human, this translates to 350–7000 mg/kg, which is significantly above the upper threshold of tolerable doses

2446- SFN,  CAP,    The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor
- in-vitro, Pca, LNCaP
AR↓, Sulforaphane and capsaicin decreased nuclear AR, prostate specific antigen and Bcl-XL levels, and cell proliferation induced by androgen and Tip60 in LNCaP cells.
Bcl-xL↓,
TumCP↓,
Glycolysis↓, Sulforaphane at 10 µM reduced the glycolysis and glycolytic capacity by 42% and 39%,
HK2↓, These bioactive compounds prevented the increase in glycolysis, hexokinase and pyruvate kinase activity, and reduced HIF-1α stabilization induced by androgen and Tip60 in LNCaP cells.
PKA↓,
Hif1a↓, Sulforaphane and Capsaicin Reduced the Increased HIF-1α Levels Induced by Androgen Stimulus and Tip60 Overexpression
PSA↓, Sulforaphane and capsaicin prevented the activation of AR signaling (decreased nuclear AR levels and PSA levels)
ECAR↓, and glycolysis (decreased EACR; and HK and PK activities) induced by androgen and Tip60.
BioAv↑, increased sulforaphane bioavailability can be attained after the intake of sulforaphane-enriched broccoli sprout preparation (generated by quick steaming followed by myrosinase treatment) in mice
BioAv↓, Liposomal and methoxypoly (ethylene glycol)-poly(ε-caprolactone) microencapsulation increase capsaicin bioavailability by 3.34-fold and 6-fold respectively in rats
*toxicity↓, considering that the minimum lethal oral dose of capsaicin is 100 mg/Kg body weight in mice, its consumption could be safely increased

1732- SFN,    Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, SUM159 - in-vivo, NA, NA
TumCD↑, reduced the size and number of primary mammospheres by 8~125-fold and 45%~75% (P < 0.01), respectively.
CSCs↓, Sulforaphane eliminated breast CSCs in vivo,
Wnt↓, Sulforaphane inhibits breast CSCs and down-regulates Wnt/β-catenin self-renewal pathway
β-catenin/ZEB1↓,
*BioAv↑, Sulforaphane was found to be converted from glucoraphanin, a major glucosinolate in broccoli/broccoli sprouts
angioG↓, Sulforaphane was also shown to suppress angiogenesis and metastasis by down-regulating VEGF, HIF-1α, MMP-2 and MMP-9 (4).
VEGF↓,
Hif1a↓,
MMP2↓,
MMP9↓,
Casp3↑,
*Half-Life∅, Plasma concentrations of sulforaphane equivalents peaked 0.94~2.27 μM in humans 1 hr after a single dose of 200 μmol broccoli sprout isothiocyanates (mainly sulforaphane)

1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, Most clinical trials utilize doses of GFN ranging from 25 to 800 μmol , translating to about 65–2105 g raw broccoli or 3/4 to 23 cups of raw broccoli.
eff↝, SFN-rich powders have been made by drying out broccoli sprout
IL1β↓,
IL6↓,
IL12↓,
TNF-α↓,
COX2↓,
CXCR4↓,
MPO↓,
HSP70/HSPA5↓,
HSP90↓,
VCAM-1↓,
IKKα↓,
NF-kB↓,
HO-1↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Cyt‑c↑,
Diablo↑,
CHOP↑,
survivin↓,
XIAP↓,
p38↑,
Fas↑,
PUMA↑,
VEGF↓,
Hif1a↓,
Twist↓,
Zeb1↓,
Vim↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Snail↓,
CD44↓,
cycD1↓,
cycA1↓,
CycB↓,
cycE↓,
CDK4↓,
CDK6↓,
p50↓,
P53↑,
P21↑,
GSH↑,
SOD↑,
GSTs↑,
mTOR↓,
Akt↓,
PI3K↓,
β-catenin/ZEB1↓,
IGF-1↓,
cMyc↓,

1725- SFN,    Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway
- Review, Var, NA
*toxicity∅, Sulforaphane (SFN), a compound derived from cruciferous vegetables that has been shown to be safe and nontoxic, with minimal/no side effects
AntiCan↑, such as anticancer and antioxidant activities.
antiOx↑,
NRF2↑, FN also upregulates a series of cytoprotective genes by activating nuclear factor erythroid-2- (NF-E2-) related factor 2 (Nrf2), a critical transcription factor activated in response to oxidative stress;
DNMTs↓, SFN can reverse such epigenetic alterations in cancers by targeting DNA methyltransferases (DNMTs), histone deacetyltransferases (HDACs)
HDAC↓,
Hif1a↓, By suppressing the expression and activity of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), SFN inhibited the angiogenesis and metastasis of ovarian and colon cancers
VEGF↓,
P21↑, 15 μM SFN treatment caused reexpression of p21WAF1/CIP1 due to reduced expression of class I and II HDACs
TumCCA↑, resulted in cell cycle arrest
ac‑H3↑, upregulation of acetylated histone H3 and H4
ac‑H4↑,
DNAdam↑, SFN induced DNA damage
Dose↝, To achieve the effective inhibition of HDAC activity, it was reported that the concentration of SFN used in vitro experiments was from 3 to 15 μM, a single oral dose of 10 μmol in mice, and 68 g broccoli sprouts in human

2556- SFN,    The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review
- Review, Var, NA
chemoP↑, sulforaphane (SFN) has surfaced as a particularly potent chemopreventive agent based on its ability to target multiple mechanisms within the cell to control carcinogenesis
HDAC↓, SFN's chemopreventative properties was also demonstrated in another study, where through its HDACi activity,
Hif1a↓, SFN inhibits hypoxia inducible factor-1 α (HIF-1α) and c-Myc, two angiogenesis- associated transcription factors
angioG↓,
CYP1A1↓, CYP1A1 reduction, MFC7
eff↑, Kallifatidis et al. reported SFN to potentiate the anti-cancer effects of cisplatin, gemcitabine, doxorubicin or 5-flurouracil on prostate cancer cell line MIA-PaCa2 while also increasing cytotoxicity of cancer stem cells
BioAv↑, Shapiro et al. reported that the chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body (Shapiro et al. 2001).

2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells
TumCG↓,
TumCI↓,
TumMeta↓,
glucoNG↓, Additionally, it can inhibit BC gluconeogenesis
ChemoSen↑, demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens.
TumCCA↑, SFN can block the cell cycle in G2/M phase, upregulate the expression of Caspase3/7 and PARP cleavage, and downregulate the expression of Survivin, EGFR and HER2/neu
Casp3↑,
Casp7↑,
cl‑PARP↑,
survivin↓,
EGFR↓,
HER2/EBBR2↓,
ATP↓, SFN inhibits the production of ATP by inhibiting glycolysis and mitochondrial oxidative phosphorylation in BC cells in a dose-dependent manner
Glycolysis↓,
mt-OXPHOS↓,
AKT1↓, dysregulation of glucose metabolism by inhibiting the AKT1-HK2 axis
HK2↓,
Hif1a↓, Sulforaphane inhibits glycolysis by down-regulating hypoxia-induced HIF-1α
ROS↑, SFN can upregulate ROS production and Nrf2 activity
NRF2↑,
EMT↓, inhibiting EMT process through Cox-2/MMP-2, 9/ ZEB1 and Snail and miR-200c/ZEB1 pathways
COX2↓,
MMP2↓,
MMP9↓,
Zeb1↓,
Snail↓,
HDAC↓, FN modulates the histone status in BC cells by regulating specific HDAC and HATs,
HATs↓,
MMP↓, SFN upregulates ROS production, induces mitochondrial oxidative damage, mitochondrial membrane potential depolarization, cytochrome c release
Cyt‑c↓,
Shh↓, SFN significantly lowers the expression of key components of the SHH pathway (Shh, Smo, and Gli1) and inhibits tumor sphere formation, thereby suppressing the stemness of cancer cells
Smo↓,
Gli1↓,
BioAv↝, SFN is unstable in aqueous solutions and at high temperatures, sensitive to oxygen, heat and alkaline conditions, with a decrease in quantity of 20% after cooking, 36% after frying, and 88% after boiling
BioAv↝, It has been reported that the ability of individuals to use gut myrosinase to convert glucoraphanin into SFN varies widely
Dose↝, Excitingly, it has been reported that daily oral administration of 200 μM SFN in melanoma patients can achieve plasma levels of 655 ng/mL with good tolerance

1452- SFN,    Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells
- in-vitro, GC, AGS
MMP9↓, Sulforaphane effectively suppressed ROS, p38 MAPK, Erk1/2, AP-1, and NF-κB activation by inhibiting MMP-9 expression in gastric cancer AGS cells.
p38↓,
ERK↓,
AP-1↓,
ROS↓, results indicate that sulforaphane suppressed the nicotine-induced MMP-9 via regulating ROS generation in human gastric cancer AGS cells ( by Inhibiting ROS Generation)
NF-kB↓, Sulforaphane Suppresses Nicotine-Induced MMP-9 Expression by Inhibiting Reporter Activities of AP-1 and NF-κB
TumCI↓,
MMP9↓, Suppressing MMP-9 Expression
HDAC↓, Rutz et al. reported that sulforaphane acts as a histone deacetylase (HDAC) inhibitor to prostate cancer cell progression
Glycolysis↓, sulforaphane decreased glycolytic metabolism in a hypoxia microenvironment by inhibiting hypoxia-induced HIF-1α
Hif1a↓,
*memory↑, Sulforaphane could prevent memory dysfunction and improve cognitive function
*cognitive↑,

1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓,
ac‑H3↑,
ChemoSen↑, SFN synergistically augmented the GEM-mediated attenuation of cell viability and proliferation
tumCV↓,
TumCP↓,
TumCCA↑, G2/M cell cycle arrest
Apoptosis↑,
cl‑Casp3↑,
TumCI↓,
VEGF↓, VEGFA
VEGFR2↓,
Hif1a↓,
eNOS↓,
EMT?, SFN effectively inhibited the GEM-mediated induction of epithelial–mesenchymal transition (EMT)
TumCG↓,
Ki-67↓,
TUNEL↑, increased TUNEL+ apoptotic cells
P21↑,
p‑Chk2↑,
CDC25↓, decreased p-Cdc25C
BAX↑,
*ROS↓, SFN is also known to exert anti-oxidative effects via Nrf2 activation. in vivo study, optimization is performed by evaluating the anti-oxidative property of SFN in the liver.
NQO1?, identified 50 mg/kg/day as the minimal dose that significantly induced these anti-oxidative genes

963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓,
VEGF↓,
angioG↓,
Akt∅, AKT and ERK signaling pathway is not involved in downregulation of HIF-1α protein by sulforaphane under hypoxic conditions
ERK∅,

1509- SFN,    Combination therapy in combating cancer
- Review, NA, NA
NRF2↑, chemopreventive properties that are thought to be due to potent upregulation of Nrf2
ChemoSideEff↓, chemopreventive properties
eff↑, combined SFN with taxol in treatment of prostate cancer cell line DU145, and observed that SFN potentiated the effects of low doses of taxol
TumCP↓,
Apoptosis↑,
TumCCA↑, induce G2/M cell cycle arrest in vitro and in vivo
eff↑, SFN positively enhanced bortezomib, lenalidomide, and conventional drugs, such as dexamethasone, doxorubicin, and melphalan in a synergistic manner
PSA↓, SFN has shown to significantly reduce levels of prostate-specific antigen (PSA) (44.4% SFN group vs. 71.8% in placebo)
P53↑, SFN activates various anti-cancer responses such as p53, ARE, IRF-1, Pax-6 and XRE while suppressing proteins involved in tumorigenesis and progression, such as HIF1α, AP-1 and CA IX
Hif1a↓, while suppressing proteins involved in tumorigenesis and progression, such as HIF1α, AP-1 and CA IX
CAIX↓,
chemoR↓, SFN has thus shown to reduce chemoresistance and may be a potential agent to be used in conjunction with chemotherapeutics
5HT↓, SFN downregulates 5-HT receptor expression in Caco-2 cells

1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, RAW: higher amounts were detected when broccoli were eaten raw (bioavailability equal to 37%), compared to the cooked broccoli (bioavailability 3.4%)
HDAC↓, Sulforaphane is able to down-regulate HDAC activity and induce histone hyper-acetylation in tumor cell
TumCCA↓, Sulforaphane induces cell cycle arrest in G1, S and G2/M phases,
eff↓, in leukemia stem cells, sulforaphane potentiates imatinib effect through inhibition of the Wnt/β-catenin functions
Wnt↓,
β-catenin/ZEB1↓,
Casp12?, inducing caspases activation
Bcl-2↓,
cl‑PARP↑,
Bax:Bcl2↑, unbalancing the ratio Bax/Bcl-2
IAP1↓, down-regulating IAP family proteins
Casp3↑,
Casp9↑,
Telomerase↓, In Hep3B cells, sulforaphane reduces telomerase activity
hTERT↓, inhibition of hTERT expression;
ROS?, increment of ROS, induced by this compound, is essential for the downregulation of transcription and of post-translational modification of hTERT in suppression of telomerase activity
DNMTs↓, (2.5 - 10 μM) represses hTERT by impacting epigenetic pathways, in particular through decreased DNA methyltransferases activity (DNMTs)
angioG↓, inhibit tumor development through regulation of angiogenesis
VEGF↓,
Hif1a↓,
cMYB↓,
MMP1↓, inhibition of migration and invasion activities induced by sulforaphane in oral carcinoma cell lines has been associated to the inhibition of MMP-1 and MMP-2
MMP2↓,
MMP9↓,
ERK↑, inhibits invasion by activating ERK1/2, with consequent upregulation of E-cadherin (an invasion inhibitor)
E-cadherin↑,
CD44↓, downregulation of CD44v6 and MMP-2 (invasion promoters)
MMP2↓,
eff↑, ombination of sulforaphane and quercetin synergistically reduces the proliferation and migration of melanoma (B16F10) cells
IL2↑, induces upregulation of IL-2 and IFN-γ
IFN-γ↑,
IL1β↓, downregulation of IL-1beta, IL-6, TNF-α, and GM-CSF
IL6↓,
TNF-α↓,
NF-kB↓, sulforaphane inhibits the phorbol ester induction of NF-κB, inhibiting two pathways, ERK1/2 and NF-κB
ERK↓,
NRF2↑, At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2.
RadioS↑, sulforaphane could be used as a radio-sensitizing agent in prostate cancer if clinical trials will confirm the pre-clinical results.
ChemoSideEff↓, chemopreventive effects of sulforaphane

1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, current evidence supporting the neuroprotective and anticancer effects of SFN
AntiCan↑,
NRF2↑, neuroprotective effects through the activation of the Nrf2 pathway
HDAC↓, histone deacetylase was inhibited after human subjects ingested 68 g of broccoli sprouts
eff↑, sensitize cancer cells to chemotherapy
*ROS↓, protecting neurons [14] and microglia [15] against oxidative stress
neuroP↑, neuroprotective effects in Alzheimer’s disease (AD)
HDAC↓, capacity as a histone deacetylase (HDAC) inhibitor
*toxicity∅, normal cells are relatively resistant to SFN-induced cell death
BioAv↑, SFN has good bioavailability; it can reach high intracellular and plasma concentrations
eff↓, However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window
cycD1↓, in breast cancer
CDK4↓, in breast cancer
p‑RB1↓, in breast cancer
Glycolysis↓, in prostate cancer
miR-30a-5p↑, ovarian cancer
TumCCA↑, gastric cancer
TumCG↓,
TumMeta↓,
eff↑, SFN emerged as a critical enhancer of ST’s efficacy by suppressing resistance in RCC cells, offering a potent approach to overcome ST monotherapy limitations.
ChemoSen↑, SFN may improve the effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them
RadioS↑, SFN may help protect healthy cells and tissues from the harmful effects of radiation
CardioT↓, Several studies have demonstrated the protective role of SFN in cardiotoxicity
angioG↓, In colon cancers, SFN blocks cells’ progression and angiogenesis by inhibiting HIF-1α and VEGF expression
Hif1a↓,
VEGF↓,
*BioAv?, SFN is well absorbed in the intestine, with an absolute bioavailability of approximately 82%.
*Half-Life∅, In rats, after an oral dose of 50 μmol of SFN, the plasma concentration of SFN can peak at 20 μM at 4 h and decline with a half-life of about 2.2 h


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 14

Results for Effect on Cancer/Diseased Cells:
5HT↓,1,   Akt↓,1,   Akt∅,1,   AKT1↓,1,   angioG↓,5,   AntiCan↑,2,   antiOx↑,1,   AP-1↓,1,   Apoptosis↑,3,   AR↓,1,   ATP↓,1,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BioAv↓,1,   BioAv↑,3,   BioAv↝,2,   CAIX↓,1,   CardioT↓,1,   Casp12?,1,   Casp3↑,4,   cl‑Casp3↑,1,   Casp7↑,2,   Casp8↑,1,   Casp9↑,2,   CD44↓,2,   CDC25↓,1,   CDK4↓,2,   CDK6↓,1,   chemoP↑,1,   chemoR↓,1,   ChemoSen↑,3,   ChemoSideEff↓,2,   p‑Chk2↑,1,   CHOP↑,1,   cMYB↓,1,   cMyc↓,1,   COX2↓,2,   CSCs↓,1,   CXCR4↓,1,   cycA1↓,1,   CycB↓,1,   cycD1↓,2,   cycE↓,1,   CYP1A1↓,1,   Cyt‑c↓,1,   Cyt‑c↑,1,   Diablo↑,1,   DNAdam↓,1,   DNAdam↑,1,   DNArepair↓,1,   DNMTs↓,2,   Dose↝,4,   E-cadherin↑,2,   ECAR↓,1,   eff↓,2,   eff↑,6,   eff↝,1,   EGFR↓,1,   EMT?,1,   EMT↓,1,   eNOS↓,1,   ERK↓,2,   ERK↑,1,   ERK∅,1,   Fas↑,1,   Gli1↓,1,   glucoNG↓,1,   Glycolysis↓,6,   GSH↑,1,   GSTs↑,1,   ac‑H3↑,2,   ac‑H4↑,1,   HATs↓,1,   HDAC↓,8,   HER2/EBBR2↓,1,   Hif1a↓,14,   HK2↓,3,   HO-1↑,1,   HSP70/HSPA5↓,1,   HSP90↓,1,   hTERT↓,1,   IAP1↓,1,   IFN-γ↑,1,   IGF-1↓,1,   IKKα↓,1,   IL12↓,1,   IL1β↓,2,   IL2↑,1,   IL6↓,2,   Ki-67↓,1,   LAMP2↑,1,   LDHA↓,1,   miR-30a-5p↑,1,   MMP↓,1,   MMP1↓,1,   MMP2↓,5,   MMP9↓,6,   MPO↓,1,   mTOR↓,1,   N-cadherin↓,1,   neuroP↑,2,   NF-kB↓,3,   NQO1?,1,   NRF2↑,5,   mt-OXPHOS↓,1,   P21↑,3,   p38↓,1,   p38↑,1,   p50↓,1,   P53↑,2,   cl‑PARP↑,3,   PI3K↓,1,   PKA↓,1,   PKM2↓,1,   PSA↓,2,   PUMA↑,1,   RadioS↑,2,   p‑RB1↓,1,   ROS?,1,   ROS↓,1,   ROS↑,1,   selectivity↑,1,   Shh↓,1,   Smo↓,1,   Snail↓,2,   SOD↑,1,   survivin↓,2,   Telomerase↓,1,   TNF-α↓,2,   TumCCA↓,1,   TumCCA↑,5,   TumCD↑,1,   TumCG↓,3,   TumCI↓,3,   TumCP↓,4,   tumCV↓,1,   TumMeta↓,2,   TUNEL↑,1,   Twist↓,1,   VCAM-1↓,1,   VEGF↓,7,   VEGFR2↓,1,   Vim↓,1,   Wnt↓,2,   XIAP↓,1,   Zeb1↓,2,   β-catenin/ZEB1↓,3,  
Total Targets: 149

Results for Effect on Normal Cells:
BioAv?,1,   BioAv↑,2,   cognitive↑,1,   Half-Life∅,2,   memory↑,1,   ROS↓,2,   toxicity↓,1,   toxicity∅,2,  
Total Targets: 8

Scientific Paper Hit Count for: Hif1a, HIF1α/HIF1a
14 Sulforaphane (mainly Broccoli)
1 Capsaicin
1 Gemcitabine (Gemzar)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:143  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page