condition found
Features: |
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects. Summary 1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑) 2.Antioxidant Activity: • Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels. 3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?) • In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels. • The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis). • This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected. - Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?. - Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells. - AMPK signaling activated by SFN, high concentrations of ROS are produced - ROS generation also results in depletion of GSH levels - HIF-1α and VEGF inhibitor - Might be effective against cancer stem cells - But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells. - “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy” - well known as HDAC inhibitor (typically 5-10um concentrations) -A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM. Dose/Bioavailabilty information: SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma. However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window. -A therapeutic dose starts at approx 60 grams of the sprouts. -100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane –Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract). - -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane) Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g) -human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract). BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound. Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN. - GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish) - Do not cook the vegetables, or if you do add myrosinase back in by adding radish. - mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold - chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body -Note half-life 2-3 hrs. BioAv is good (15-80%) but requires myrosinase Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
(Also known as Hsp32 and HMOX1) HO-1 is the common abbreviation for the protein (heme oxygenase‑1) produced by the HMOX1 gene. HO-1 is an enzyme that plays a crucial role in various cellular processes, including the breakdown of heme, a toxic molecule. Research has shown that HO-1 is involved in the development and progression of cancer. -widely regarded as having antioxidant and cytoprotective effects -The overall activity of HO‑1 helps to reduce the pro‐oxidant load (by degrading free heme, a pro‑oxidant) and to generate molecules (like bilirubin) that can protect cells from oxidative damage Studies have found that HO-1 is overexpressed in various types of cancer, including lung, breast, colon, and prostate cancer. The overexpression of HO-1 in cancer cells can contribute to their survival and proliferation by: Reducing oxidative stress and inflammation Promoting angiogenesis (the formation of new blood vessels) Inhibiting apoptosis (programmed cell death) Enhancing cell migration and invasion When HO-1 is at a normal level, it mainly exerts an antioxidant effect, and when it is excessively elevated, it causes an accumulation of iron ions. A proper cellular level of HMOX1 plays an antioxidative function to protect cells from ROS toxicity. However, its overexpression has pro-oxidant effects to induce ferroptosis of cells, which is dependent on intracellular iron accumulation and increased ROS content upon excessive activation of HMOX1. -Curcumin Activates the Nrf2 pathway leading to HO‑1 induction; known for its anti‑inflammatory and antioxidant effects. -Resveratrol Induces HO‑1 via activation of SIRT1/Nrf2 signaling; exhibits antioxidant and cardioprotective properties. -Quercetin Activates Nrf2 and related antioxidant pathways; contributes to anti‑oxidative and anti‑inflammatory responses. -EGCG Promotes HO‑1 expression through activation of the Nrf2/ARE pathway; also exhibits anti‑inflammatory and anticancer properties. -Sulforaphane One of the most potent natural HO‑1 inducers; triggers Nrf2 nuclear translocation and upregulates a battery of phase II detoxifying enzymes. -Luteolin Induces HO‑1 via Nrf2 activation; may also exert anti‑inflammatory and neuroprotective effects in various cell models. -Apigenin Has been reported to induce HO‑1 expression partly via the MAPK and Nrf2 pathways; also known for anti‑inflammatory and anticancer activities. |
2552- | SFN,  | Chemo,  |   | Chemopreventive activity of sulforaphane |
- | Review, | Var, | NA |
1726- | SFN,  |   | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
- | Review, | Var, | NA |
1722- | SFN,  |   | Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems |
- | Review, | Var, | NA |
- | in-vitro, | Pca, | PC3 |
3184- | SFN,  |   | The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical |
- | Review, | Nor, | NA |
2553- | SFN,  |   | Mechanistic review of sulforaphane as a chemoprotective agent in bladder cancer |
- | Review, | Bladder, | NA |
1437- | SFN,  |   | Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition |
- | Review, | NA, | NA |
1431- | SFN,  |   | Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts |
- | in-vivo, | Nor, | NA |
1429- | SFN,  |   | Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast |
- | in-vivo, | Nor, | NA | - | Human, | Nor, | NA |
- | in-vitro, | Bladder, | T24 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:156 Target#:597 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid