condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


AMPK, adenosine monophosphate-activated protein kinase: Click to Expand ⟱
Source:
Type:
AMPK: guardian of metabolism and mitochondrial homeostasis; Upon changes in the ATP-to-AMP ratio, AMPK is activated. (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways.

-Activating AMPK can inhibit anabolic processes and the PI3K/Akt/mTOR pathway reducing glycolysis shifting toward Oxidative Phosphorlylation.


AMPK activators:
-metformin or AICAR
-Resveratrol: activate AMPK indirectly
-Berberine
-Quercetin: may stimulate AMPK
-EGCG: thought to activate AMPK
-Curcumin: may activate AMPK

-Ginsenosides: Some ginsenosides have been associated with AMPK activation -Beta-Lapachone: A natural naphthoquinone compound found in the bark of Tabebuia avellanedae (also known as lapacho or taheebo). It has been observed to activate AMPK in certain models.
-Alpha-Lipoic Acid (ALA): associated with AMPK activation


Scientific Papers found: Click to Expand⟱
2445- SFN,    Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
TumCCA↑, SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence
P21↑,
p27↑,
NO↑, effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling
Akt↓,
ATP↓, decreased pools of ATP and AMPK activation, and autophagy induction
AMPK↑,
TumAuto↑,
DNMT1↓, decreased levels of DNA methyltransferases (DNMT1, DNMT3B)
HK2↓, A decrease in HK2 levels was observed in SFN-treated MDA-MB-231 cells
PKM2↓, and a decrease in PKM2 levels was noticed in SFN-treated MDA-MB-231 and SK-BR-3 cells
HDAC3↓, . In contrast, HDAC3 , HDAC4 , HDAC6 , HDAC7 , HDAC8 ), HDAC9 and HDAC10 (histone deacetylase 10) mRNA levels were decreased in SFN-treated MDA-MB-231 cells
HDAC4↓,
HDAC8↓,

1723- SFN,    Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review
- Review, Var, NA
*NRF2↑, activation of nuclear factor erythroid 2-related factor 2 (Nrf2). In this way, the oxidative stress and other toxicants are diminished
ROS↑, Cytotoxic effects of SFN are delivered via complex mechanisms where ROS generation results in improving apoptosis
MMP↓, ROS generation is also followed by mitochondrial membrane potential disruption that results in cytochrome c cytosolic release cleaving the poly-ADP-ribose polymerase and apoptosi
Cyt‑c↑,
cl‑PARP↑,
Apoptosis↑,
AMPK↑, AMPK signaling activated by SFN, high concentrations of ROS are produced
GSH↓, SFN-induced ROS generation also results in depletion of GSH levels

3186- SFN,    A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet
- in-vivo, Nor, NA
*NLRP3↓, suppression of NLRP3 inflammasome activation in the liver by SFN as evidenced by decrease in mRNA levels of ASC and caspase-1, caspase-1 enzyme activity, and IL-1β levels.
*ASC↓,
*Casp1↓,
*IL1β↓,
*ALAT↓, SFN treatment resulted in a reduction of the serum levels of ALT and AST increased by HFD
*AST↓,
*AMPK↑, Sulforaphane induces activation of the AMPK-autophagy axis in mouse primary hepatocytes
*mTOR↓, SFN reduced the phosphorylation of mTOR(Ser2448) in primary mouse hepatocytes (Fig. 4D), suggesting that SFN inhibited mTOR activation
*P70S6K↓, SFN suppression of mTOR activation was confirmed by a decrease in p70S6K1 phosphorylation, which is a downstream substrate of mTOR

1479- SFN,    Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway
- in-vitro, CRC, HCT116
Ferroptosis↑, sulforaphane triggered the ferroptosis of HCT-116 cells by activating the SIRT3/AMPK/mTOR axis
SIRT3↑,
AMPK↑,
mTOR↑,
tumCV↓, SIRT3 overexpression reduced cell viability and increased intracellular levels of ROS, MDA, and iron
ROS↑,
MDA↑,
Iron↑,

1471- SFN,    ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells
- in-vitro, GC, AGS
TumCP↓,
Apoptosis↑,
TumCCA↑, G2/M phase
CycB↑,
P21↑,
p‑H3↑,
p‑AMPK↑,
eff↓, compound C, an AMPK inhibitor, significantly blocked sulforaphane-induced apoptosis
MMP↓,
Cyt‑c↑,
ROS↑, sulforaphane provoked the generation of intracellular ROS
eff↓, sulforaphane provoked the generation of intracellular ROS; especially when ROS production was blocked by antioxidant N-acetylcysteine, both AMPK activation and growth inhibition by sulforaphane were completely abolished


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AMPK↑,3,   p‑AMPK↑,1,   Apoptosis↑,2,   ATP↓,1,   CycB↑,1,   Cyt‑c↑,2,   DNMT1↓,1,   eff↓,2,   Ferroptosis↑,1,   GSH↓,1,   p‑H3↑,1,   HDAC3↓,1,   HDAC4↓,1,   HDAC8↓,1,   HK2↓,1,   Iron↑,1,   MDA↑,1,   MMP↓,2,   mTOR↑,1,   NO↑,1,   P21↑,2,   p27↑,1,   cl‑PARP↑,1,   PKM2↓,1,   ROS↑,3,   SIRT3↑,1,   TumAuto↑,1,   TumCCA↑,2,   TumCP↓,1,   tumCV↓,1,  
Total Targets: 31

Results for Effect on Normal Cells:
ALAT↓,1,   AMPK↑,1,   ASC↓,1,   AST↓,1,   Casp1↓,1,   IL1β↓,1,   mTOR↓,1,   NLRP3↓,1,   NRF2↑,1,   P70S6K↓,1,  
Total Targets: 10

Scientific Paper Hit Count for: AMPK, adenosine monophosphate-activated protein kinase
5 Sulforaphane (mainly Broccoli)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:9  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page