condition found tbRes List
SFN, Sulforaphane (mainly Broccoli): Click to Expand ⟱
Features:
Sulforaphane is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.

Summary
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)
2.Antioxidant Activity:
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected.

- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.
- AMPK signaling activated by SFN, high concentrations of ROS are produced
- ROS generation also results in depletion of GSH levels
- HIF-1α and VEGF inhibitor
- Might be effective against cancer stem cells
- But I would not combine that with radiation, as Sulforaphane activates the anti-oxidant master regulator of cells.
- “I very much agree: Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy”
- well known as HDAC inhibitor (typically 5-10um concentrations)
-A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.


Dose/Bioavailabilty information:
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma.
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.
-A therapeutic dose starts at approx 60 grams of the sprouts.
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract).
- -750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)

Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g)
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).

BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.

Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.
- mild heat of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold
- chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body

-Note half-life 2-3 hrs.
BioAv is good (15-80%) but requires myrosinase
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓(contrary, actually most raises NRF2), TrxR↓**, GSH↓, Catalase↓(contrary), HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, β-catenin↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, 5↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2166- SFN,    Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction
- in-vitro, Oral, NA - in-vivo, NA, NA
CSCs↓, sulforaphane dose-dependently eliminated the proliferation rate of OSCC-CSCs
selectivity↑, whereas the inhibition on SG(normal) cells proliferation was limited.
TumCMig↓, sulforaphane treatment of OSCC-CSCs decreased the migration, invasion, clonogenicity, and in vivo tumorigenicity of xenograghts.
TumCI↓,

1734- SFN,    Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in Hypoxia
- in-vitro, Bladder, RT112
selectivity↑, sulforaphane, a natural chemical which was abundant in cruciferous vegetables, could suppress bladder cancer cells proliferation in hypoxia significantly stronger than in normoxia
TumCP↓,
Glycolysis↓, sulforaphane decreased glycolytic metabolism in a hypoxia microenvironment by downregulating hypoxia-induced HIF-1α and blocking HIF-1α t
Hif1a↓,

1736- SFN,    Antitumor and antimetastatic effects of dietary sulforaphane in a triple-negative breast cancer models
- in-vitro, BC, NA - in-vivo, BC, NA
TumCG↓, in vivo experiment showed up to 31% tumor growth inhibition after sulforaphane treatment
selectivity↓, The in vitro study confirmed that SFN inhibited cell migration, but only in cells derived from 3D spheroids, not from 2D in vitro cultures.

3192- SFN,    Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention
- in-vitro, Pca, PC3
Sp1/3/4↓, Sp1 protein was significantly decreased by SFN treatment in prostate cancer cells . Because SFN decreased the expression of Sp1, and to a lesser extent Sp3
selectivity↑, SFN alters gene expression differentially in normal and cancer cells with key targets in chemopreventive processes, making it a promising dietary anti-cancer agent.
NRF2↑, through the induction of phase 2 enzymes via Keap1-Nrf2 signaling
HDAC↓, SFN also inhibits the activity and/or expression of genes that regulate epigenetic mechanisms including histone deactylases (HDACs) and DNA methyltransferases (DNMTs) in cancer cells
DNMTs↓,
TumCCA↑, 15 μM SFN treatment induces cell cycle arrest at the G1 phase and only modestly increases apoptosis
selectivity↑, Normal prostate epithelial cells (PREC) do not undergo cell cycle arrest or apoptosis in response to this SFN treatment
HO-1↑, In all cell lines and time points, HO1 and NQO1 were identified as significantly upregulated by SFN
NQO1↑,
CDK2↓, MX non-receptor tyrosine kinase (BMX), cyclin-dependent kinase 2 (CDK2), and polo-like kinase 1 (PLK1) had decreased expression with SFN treatment
TumCP↓, suppression of Sp1 expression decreased prostate cancer cells proliferation.
BID↑, SFN treatment produced a significant increase in the expression of the apoptosis related genes Bid, Smac/Diablo, and ICAD only in PC-3 cells (
Smad1↑,
Diablo↑,
ICAD↑,
Cyt‑c↑, It also increased the expression of cytochrome c, c-IAP1, and HSP27 in PC-3 cells while it decreased expression in PREC cells.
IAP1↑,
HSP27↑,
*Cyt‑c↓,
*IAP1↓,
*HSP27↓,
survivin↓, In these studies, inhibition of Sp1 is associated with inhibition of the cancer promoting genes survivin, CDK4, VEGF and the androgen receptor.
CDK4↓,
VEGF↓,
AR↓,

3182- SFN,    Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia Cells
- in-vitro, AML, NA
Prx↓, The results show that the cell treatment with 10 μM SFN for 24 h significantly decreased Prx-1 expression.
AQPs↓, Results indicated that sulforaphane inhibited both aquaporin-8 and Nox2 expression, thus decreasing B1647 cells viability.
NOX↓,
tumCV↓,
AntiCan↑, In addition to its well-known anticancer activity [2], SFN has been demonstrated to possess cardioprotective [3], neuroprotective [4], and anti-inflammatory activities
cardioP↑,
neuroP↑,
Inflam↓,
chemoP↑, potent chemopreventive effect of SFN is based on its ability to target multiple mechanisms within the cell to control carcinogenesis
angioG↓, SFN prevents uncontrolled cancer cell proliferation through the modulation of genes involved in apoptosis and cell cycle arrest [5, 8], angiogenesis [9, 10], and metastasis
TumMeta↓,
selectivity↑, SFN is able to selectively exert cytotoxic effects in many human cancer cells without affecting normal cells
ROS↓, Results in Figure 4 show that only 10 μM SFN treatment causes a significant decrease of ROS intracellular levels in respect to control cells,

1502- SFN,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
HDAC↓, (SFN), a major component present in cruciferous vegetables, inhibits HDAC activity
AntiCan↑, shown to reduce the risk of developing many common cancers
DNMTs↓, SFN was found to inhibit DNMTs in MCF-7 and MDA-MB-231 breast cancer as well as CaCo-2 colon cancer cells
hTERT↓, inhibited human telomerase reverse transcriptase (hTERT)
selectivity↑, inhibited (hTERT), in both MCF-7 and MDA-MB-231 human breast cancer cells and that it had negligible effects on normal control cells.

1498- SFN,    Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells
- in-vitro, CRC, HCT116 - in-vitro, Nor, NCM460
selectivity↑, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells
TumCCA↑, reduction of G1 phase cell distribution
Apoptosis↑, apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells
*p‑ERK↑, in NCM460 cells but not in HCT116 cells
cMYB↓, decreased c-Myc expression in HCT116 cells but not NCM460 cells.
selectivity↑, decreased c-Myc expression in HCT116 cells but not NCM460 cells.
selectivity↑, upregulated p-ERK1/2 in NCM460 cells but not in HCT116 cells

1497- SFN,    Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells
- in-vitro, Nor, PrEC - in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
HDAC↓, ability of SFN to inhibit histone deacetylase enzymes
selectivity↑, 15 µM SFN selectively induced cell cycle arrest and apoptosis in BPH1, LnCap and PC3 cells but not PrEC cells
TumCCA↑,
Apoptosis↑,
selectivity↑, selectively decreased HDAC activity
H3↑,
P21↑, in prostate cancer cells
selectivity↑, we conclude that SFN exerts differential effects on cell proliferation, HDAC activity and downstream targets in normal and cancer cells.

1494- SFN,  doxoR,    Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model
- in-vivo, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
CardioT↓, SFN (4 mg/kg, 5 days/week) protected against mortality and cardiac dysfunction induced by DOX
*GSH↑, Rats Hearts: SFN and DOX co-treatment reduced MDA and 4-HNE adduct formation and also prevented DOX-induced depletion of GSH levels
*ROS↓, SFN reduces DOX-induced oxidative stress in the heart of non-tumor bearing rats.
*NRF2↑, activates Nrf2 in rat hearts during DOX treatment
NRF2∅, SFN does not interfere with DOX toxicity or Nrf2 activity in breast cancer cell lines
HDAC↓, SFN acts synergistically with DOX to inhibit HDAC and DNMT activity, decrease ERα detection and increase caspase-3 activity
DNMTs↓,
Casp3↑,
ER-α36↓, ERα levels in MCF-7, MDA-MB-231
Remission↑, SFN+DOX treatment (with a total DOX dose of 20 mg/kg) was able to eradicate the tumors in all rats by day 35 after tumor implantation
eff↑, SFN (4 mg/kg oral; 5 days/week for 5 weeks) with DOX (total of 10 or 20 mg/kg i.p. administered over 4 weeks) and showed that in combination with SFN, the dosage of DOX could be < by 50% while still eliciting the same anti-cancer effects as DOX alone
ROS↑, Increased generation of reactive oxygen species (ROS), an altered redox status, and aerobic glycolysis for energy production distinguish highly proliferative cancer cells from normal healthy cells
selectivity?, ROS production... distinguish highly proliferative cancer cells from normal healthy cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 9

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   AntiCan↑,2,   Apoptosis↑,2,   AQPs↓,1,   AR↓,1,   BID↑,1,   cardioP↑,1,   CardioT↓,1,   Casp3↑,1,   CDK2↓,1,   CDK4↓,1,   chemoP↑,1,   cMYB↓,1,   CSCs↓,1,   Cyt‑c↑,1,   Diablo↑,1,   DNMTs↓,3,   eff↑,1,   ER-α36↓,1,   Glycolysis↓,1,   H3↑,1,   HDAC↓,4,   Hif1a↓,1,   HO-1↑,1,   HSP27↑,1,   hTERT↓,1,   IAP1↑,1,   ICAD↑,1,   Inflam↓,1,   neuroP↑,1,   NOX↓,1,   NQO1↑,1,   NRF2↑,1,   NRF2∅,1,   P21↑,1,   Prx↓,1,   Remission↑,1,   ROS↓,1,   ROS↑,1,   selectivity?,1,   selectivity↓,1,   selectivity↑,12,   Smad1↑,1,   Sp1/3/4↓,1,   survivin↓,1,   TumCCA↑,3,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,1,   VEGF↓,1,  
Total Targets: 53

Results for Effect on Normal Cells:
Cyt‑c↓,1,   p‑ERK↑,1,   GSH↑,1,   HSP27↓,1,   IAP1↓,1,   NRF2↑,1,   ROS↓,1,  
Total Targets: 7

Scientific Paper Hit Count for: selectivity, selectivity
9 Sulforaphane (mainly Broccoli)
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:156  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page