condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
3436- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel
- in-vitro, BC, MCF-7
ChemoSen↑, LA also enhanced the sensitivity of breast cancer spheroids to doxorubicin (Dox), demonstrating a synergistic effect.
PI3K↓, LA inhibits PI3K/AKT signaling in breast cancer spheroids
Akt↓,
ATP↓, found that LA markedly reduced both ATP levels and glucose uptake
GlucoseCon↓,
ROS↑, LA also induced ROS generation in both MCF-7 and MDA-MB231 spheroids
PKM2↓, LA downregulated the expression of PKM2 and LDHA in the spheroids, indicating an inhibition of glycolysis in BCSCs
Glycolysis↓,
CSCs↓,
IGF-1R↓, LA inhibits IGF-1R via furin downregulation, synergizes with other anticancer drugs like paclitaxel and cisplatin, and enhances radiosensitivity in breast cancer
Furin↓,
RadioS↑,

3434- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, significant dose-dependent reduction in cell viability, with the half-maximal inhibitory concentration (IC50) of LA to be 3.2 mM for MCF-7 cells and 2.9 mM for MDA-MB-231 cells
PI3K↓, LA significantly inhibited PI3K, p-AKT, p-p70S6K and p-mTOR levels
p‑Akt↓,
p‑P70S6K↓,
mTOR↓,
ATP↓, LA markedly reduced both ATP levels and glucose uptake (Fig. 4A and 4B). LA also induced ROS generation in both MCF-7 and MDA-MB231 spheroids
GlucoseCon↓,
ROS↑,
PKM2↓, LA downregulated the expression of PKM2 and LDHA in the spheroids, indicating an inhibition of glycolysis in BCSCs
LDHA↓,
Glycolysis↓,
ChemoSen↑, LA enhances chemosensitivity of spheroids to Dox treatment

3541- ALA,    Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology
- Review, Var, NA
*antiOx↑, α-LA has been widely used as an antioxidant compound in many multivitamin formulations, food supplements, anti-aging formulas, and even in human and pet food recipes
*IronCh↑, potential role in the chelation of metals and in restoring normal levels of intracellular glutathione (GSH) after depletion caused by toxicants,
*GSH↑,
*BBB?, ALA, which can pass through the blood-brain barrier (BBB
Apoptosis↑, increased level of apoptosis, mitochondrial membrane depolarization, ROS production, lipid peroxidation, poly-(ADP)-ribose polymerase 1 (PARP1), caspase 3 and 9 expression levels in simultaneous ALA (0.05 mM) and cisplatin(0.025 mM)-treated MCF7
MMP↓,
ROS↑,
lipid-P↑,
PARP1↑,
Casp3↑,
Casp9↑,
*NRF2↑, ALA's ability to activate Nfr2 in GSH production
*GSH↑,
*ROS↓, administration of ALA has been shown to reduce oxidative stress
RenoP↑, ALA also reduced lipid peroxidation in the kidneys caused by the anticancer drug cisplatin,
ChemoSen↑, ALA enhances the functions of various anticancer drugs such as 5-fluorouracil in CRC [146] and cisplatin in MCF-7 cells
*BG↓, ALA was shown to lower the blood glucose levels in patients with type 2 diabetes

278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, direct anticancer effect of the antioxidant ALA is manifested as an increase in intracellular ROS levels in cancer cells
NRF2↑, enhance the activity of the anti-inflammatory protein nuclear factor erythroid 2–related factor 2 (Nrf2), thereby reducing tissue damage
Inflam↓,
frataxin↑,
*BioAv↓, Oral ALA has a bioavailability of approximately 30% due to issues such as poor stability in the stomach, low solubility, and hepatic degradation.
ChemoSen↑, ALA can enhance the functionality of various other anticancer drugs, including 5-fluorouracil in colon cancer cells and cisplatin in MCF-7 breast cancer cells
Hif1a↓, it is inferred that lipoic acid may inhibit the expression of HIF-1α
eff↑, act as a synergistic agent with natural polyphenolic substances such as apigenin and genistein
FAK↓, ALA inhibits FAK activation by downregulating β1-integrin expression and reduces the levels of MMP-9 and MMP-2
ITGB1↓,
MMP2↓,
MMP9↓,
EMT↓, ALA inhibits the expression of EMT markers, including Snail, vimentin, and Zeb1
Snail↓,
Vim↓,
Zeb1↓,
P53↑, ALA also stimulates the mutant p53 protein and depletes MGMT
MGMT↓, depletes MGMT by inhibiting NF-κB signalling, thereby inducing apoptosis
Mcl-1↓,
Bcl-xL↓,
Bcl-2↓,
survivin↓,
Casp3↑,
Casp9↑,
BAX↑,
p‑Akt↓, ALA inhibits the activation of tumour stem cells by reducing Akt phosphorylation.
GSK‐3β↓, phosphorylation and inactivation of GSK3β
*antiOx↑, indirect antioxidant protection through metal chelation (ALA primarily binds Cu2+ and Zn2+, while DHLA can bind Cu2+, Zn2+, Pb2+, Hg2+, and Fe3+) and the regeneration of certain endogenous antioxidants, such as vitamin E, vitamin C, and glutathione
*ROS↓, ALA can directly quench various reactive species, including ROS, reactive nitrogen species, hydroxyl radicals (HO•), hypochlorous acid (HclO), and singlet oxygen (1O2);
selectivity↑, In normal cells, ALA acts as an antioxidant by clearing ROS. However, in cancer cells, it can exert pro-oxidative effects, inducing pathways that restrict cancer progression.
angioG↓, Combining these two hypotheses, it can be hypothesized that ALA may regulate copper and HIF-2α to limit tumor angiogenesis.
MMPs↓, ALA was shown to inhibit invasion by decreasing the mRNA levels of key matrix metalloproteinases (MMPs), specifically MMP2 and MMP9, which are crucial for the metastatic process
NF-kB↓, ALA has been shown to enhance the efficacy of the chemotherapeutic drug paclitaxel in breast and lung cancer cells by inhibiting the NF-κB signalling pathway and the functions of integrin β1/β3 [138,139]
ITGB3↓,
NADPH↓, ALA has been shown to inhibit NADPH oxidase, a key enzyme closely associated with NP, including NOX4


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,2,   angioG↓,1,   Apoptosis↑,1,   ATP↓,2,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   Casp3↑,2,   Casp9↑,2,   ChemoSen↑,4,   CSCs↓,1,   eff↑,1,   EMT↓,1,   FAK↓,1,   frataxin↑,1,   Furin↓,1,   GlucoseCon↓,2,   Glycolysis↓,2,   GSK‐3β↓,1,   Hif1a↓,1,   IGF-1R↓,1,   Inflam↓,1,   ITGB1↓,1,   ITGB3↓,1,   LDHA↓,1,   lipid-P↑,1,   Mcl-1↓,1,   MGMT↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   NADPH↓,1,   NF-kB↓,1,   NRF2↑,1,   P53↑,1,   p‑P70S6K↓,1,   PARP1↑,1,   PI3K↓,2,   PKM2↓,2,   RadioS↑,1,   RenoP↑,1,   ROS↑,4,   selectivity↑,1,   Snail↓,1,   survivin↓,1,   tumCV↓,1,   Vim↓,1,   Zeb1↓,1,  
Total Targets: 51

Results for Effect on Normal Cells:
antiOx↑,2,   BBB?,1,   BG↓,1,   BioAv↓,1,   GSH↑,2,   IronCh↑,1,   NRF2↑,1,   ROS↓,2,  
Total Targets: 8

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
4 Alpha-Lipoic-Acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page