condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cognitive, cognitive: Click to Expand ⟱
Source:
Type:
Cognitive


Scientific Papers found: Click to Expand⟱
3447- ALA,    Redox Active α-Lipoic Acid Differentially Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer and Its Control Cells
- in-vitro, AD, SH-SY5Y
*ATP↑, Incubation with ALA showed a significant increase in ATP levels in both SH-SY5Y-APP695 and SH-SY5Y-MOCK cells.
*MMP↑, MMP levels were elevated in SH-SY5Y-MOCK cells, treatment with rotenone showed a reduction in MMP, which could be partly alleviated after incubation with ALA in SH-SY5Y-MOCK cells.
*ROS↓, ROS levels were significantly lower in both cell lines treated with ALA.
*GlucoseCon↑, benefits to diabetic neuropathy and impaired glucose uptake, and the regeneration of glutathione (GSH) and vitamins C and E
*GSH↑,
*neuroP↑, ALA seems to have a positive effect on neurodegenerative diseases such as AD
*cognitive↑, ALA improves cognitive performance and could be considered as a promising bioactive substance for AD by affecting multiple mechanisms such as:
*Ach↑, (1) impaired acetylcholine production;
*Inflam↓, (2) hydroxyl radical formation, ROS production, and neuroinflammation;
*Aβ↓, (3) impaired amyloid plaque formation;
OXPHOS↓, ALA has also been shown to restore the expression of OXPHOS complexes in HepG2 cells, ranging in a concentration between 0.5–2 mM

3444- ALA,    Alpha-Lipoic Acid Nootropic Review: Benefits, Use, Dosage & Side Effects
- Review, NA, NA
*BBB↑, ALA's ability to cross the blood-brain barrier and its dual solubility in both water and lipid environments position it as a promising compound in the realm of cognitive enhancement and neurological health
*cognitive↑,
*neuroP↑, Alpha-lipoic acid demonstrates robust neuroprotective and cognitive-enhancing effects through its potent antioxidant properties
*antiOx↑,

3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, antioxidant potential and free radical scavenging activity.
*ROS↓,
*IronCh↑, Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
*cognitive↑, α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties.
*cardioP↓,
AntiCan↑,
*neuroP↑,
*Inflam↓, α-Lipoic acid can reduce inflammatory markers in patients with heart disease
*BioAv↓, bioavailability in its pure form is low (approximately 30%).
*AntiAge↑, As a dietary supplements α-lipoic acid has become a common ingredient in regular products like anti-aging supplements and multivitamin formulations
*Half-Life↓, it has a half-life (t1/2) of 30 min to 1 h.
*BioAv↝, It should be stored in a cool, dark, and dry environment, at 0 °C for short-term storage (few days to weeks) and at − 20 °C for long-term storage (few months to years).
other↝, Remarkably, neither α-lipoic acid nor dihydrolipoic acid can scavenge hydrogen peroxide, possibly the most abundant second messenger ROS, in the absence of enzymatic catalysis.
EGFR↓, α-Lipoic acid inhibits cell proliferation via the epidermal growth factor receptor (EGFR) and the protein kinase B (PKB), also known as the Akt signaling, and induces apoptosis in human breast cancer cells
Akt↓,
ROS↓, α-Lipoic acid tramps the ROS followed by arrest in the G1 phase of the cell cycle and activates p27 (kip1)-dependent cell cycle arrest via changing of the ratio of the apoptotic-related protein Bax/Bcl-2
TumCCA↑,
p27↑,
PDH↑, α-Lipoic acid drives pyruvate dehydrogenase by downregulating aerobic glycolysis and activation of apoptosis in breast cancer cells, lactate production
Glycolysis↓,
ROS↑, HT-29 human colon cancer cells; It was concluded that α-lipoic acid induces apoptosis by a pro-oxidant mechanism triggered by an escalated uptake of mitochondrial substrates in oxidizable form
*eff↑, Several studies have found that combining α-lipoic acid and omega-3 fatty acids has a synergistic effect in slowing functional and cognitive decline in Alzheimer’s disease
*memory↑, α-lipoic acid inhibits brain weight loss, downregulates oxidative tissue damage resulting in neuronal cell loss, repairs memory and motor function,
*motorD↑,
*GutMicro↑, modulates the gut microbiota without reducing the microbial diversity (

3438- ALA,    The Potent Antioxidant Alpha Lipoic Acid
- Review, NA, NA - Review, AD, NA
*antiOx↑, Both of alpha lipoic acid and its reduced form have been shown to possess anti-oxidant, cardiovascular, cognitive, anti-ageing, detoxifying, anti-inflammatory, anti-cancer, and neuroprotective pharmacological properties
*cardioP↑,
*cognitive↑, Alpha lipoic acid has the ability to decrease cognitive impairment and may be a successful therapy for Alzheimer’s disease and any disease related dementias
*AntiAge↑,
*Inflam↓,
*AntiCan↑,
*neuroP↑, ALA has neuroprotective effects in experimental brain injury caused by trauma and subarachnoid hemorrhage
*IronCh↑, Also, the ability of ALA to chelate metals can produce an antioxidant effect
*ROS↑, DHLA can exert a pro-oxidant effect of donating its electrons for the reduction of iron, which can then break down peroxide to the prooxidant hydroxyl radical via the Fenton reaction [10]. So, ALA and its reduced form DHLA, can promote antioxidant pr
*Weight↓, α-lipoic acid supplementation at a dose of 300 mg/day might help to could help to promote weight loss and fat mass reduction in healthy overweight/obese women following an energy-restricted balanced diet
*Ach↑, Alpha lipoic acid increases the production of Acetylcholine (Ach) via activating choline acetyl transferase and increases glucose uptake, hence, supplying more acetyl-CoA for the production of Ach of each
*ROS↓, also scavenges reactive oxygen species, thereby increasing the concentration levels of reduced Glutathione (GSH).
*GSH↑,
*lipid-P↓, Alpha lipoic acid can scavenge lipid peroxidation products as hydroxynonenal and acrolein.
*memory↑, learning and memory in the passive avoidance test partially through its antioxidant activity.
*NRF2↑, α-LA treatment has been shown to increase Nrf2 nuclear localization
*ChAT↑, Alpha lipoic acid increases the production of Acetylcholine (Ach) via activating choline acetyl transferase and increases glucose uptake, hence, supplying more acetyl-CoA for the production of Ach of each
*GlucoseCon↑,
*Acetyl-CoA↑,

3272- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*antiOx↑, LA has long been touted as an antioxidant,
*glucose↑, improve glucose and ascorbate handling,
*eNOS↑, increase eNOS activity, activate Phase II detoxification via the transcription factor Nrf2, and lower expression of MMP-9 and VCAM-1 through repression of NF-kappa-B.
*NRF2↑,
*MMP9↓,
*VCAM-1↓,
*NF-kB↓,
*cardioP↑, used to improve age-associated cardiovascular, cognitive, and neuromuscular deficits,
*cognitive↑,
*eff↓, The efficiency of LA uptake was also lowered by its administration in food,
*BBB↑, LA has been shown to cross the blood-brain barrier in a limited number of studies;
*IronCh↑, LA preferentially binds to Cu2+, Zn2+ and Pb2+, but cannot chelate Fe3+, while DHLA forms complexes with Cu2+, Zn2+, Pb2+, Hg2+ and Fe3+
*GSH↑, LA markedly increases intracellular glutathione (GSH),
*PKCδ↑, PKCδ, LA activates Erk1/2 [92,93], p38 MAPK [94], PI3 kinase [94], and Akt
*ERK↑,
*p38↑,
*MAPK↑,
*PI3K↑,
*Akt↑,
*PTEN↓, LA decreases the activities of Protein Tyrosine Phosphatase 1B [99], Protein Phosphatase 2A [95], and the phosphatase and tensin homolog PTEN [95],
*AMPK↑, LA activates peripheral AMPK
*GLUT4↑, stimulate GLUT4 translocation
*GLUT1↑, LA-stimulated translocation of GLUT1 and GLUT4.
*Inflam↓, LA as an anti-inflammatory agent

3271- ALA,    Decrypting the potential role of α-lipoic acid in Alzheimer's disease
- Review, AD, NA
*antiOx↑, Alpha-lipoic acid (α-LA), a natural antioxidant
*memory↑, multiple preclinical studies indicating beneficial effects of α-LA in memory functioning, and pointing to its neuroprotective effects
*neuroP↑, α-LA could be considered neuroprotective
*Inflam↓, α-LA shows antioxidant, antiapoptotic, anti-inflammatory, glioprotective, metal chelating properties in both in vivo and in vitro studies.
*IronCh↑, α-LA leads to a marked downregulation in iron absorption and active iron reserve inside the neuron
*NRF2↑, α-LA induces the activity of the nuclear factor erythroid-2-related factor (Nrf2), a transcription factor.
*BBB↑, capable of penetrating the BBB
*GlucoseCon↑, Fig 2, α-LA mediated regulation of glucose uptake
*Ach↑, α-LA may show its action on the activity of the ChAT enzyme, which is an essential enzyme in acetylcholine metabolism
*ROS↓,
*p‑tau↓, decreased degree of tau phosphorylation following treatment with α-LA
*Aβ↓, α-LA possibly induce the solubilization of Aß plaques in the frontal cortex
*cognitive↑, cognitive reservation of α-LA served AD model was markedly upgraded in additional review
*Hif1a↑, α-LA treatment efficaciously induces the translocation and activity of hypoxia-inducible factor-1α (HIF-1α),
*Ca+2↓, research found that α-LA therapy remarkably declines Ca2+ concentration and calpain signaling
*GLUT3↑, inducing the downstream target genes expression, such as GLUT3, GLUT4, HO-1, and VEGF.
*GLUT4↑,
*HO-1↑,
*VEGF↑,
*PDKs↓, α-LA also ameliorates survival in mutant mice of Huntington's disease [150–151], possibly due to the inhibition of the activity of pyruvate dehydrogenase kinase
*PDH↑, α-LA administration enhances PDH expression in mitochondrial hepatocytes by inhibiting the pyruvate dehydrogenase kinase (PDK),
*VCAM-1↓, α-LA inhibits the expression of cell-cell adhesion molecule-1 and VCAM-1 in spinal cords and TNF-α induced neuronal endothelial cells injury
*GSH↑, α-LA may enhance glutathione production in old-aged models
*NRF2↑, activation of the Nrf2 signaling by α-LA
*hepatoP↑, α-LA also protected the liver against oxidative stress-mediated hepatotoxicity
*ChAT↑, α-LA in mice models may prevent neuronal injury possibly due to an increase in ChAT in the hippocampus of animal models

3270- ALA,    Alpha-lipoic acid as a new treatment option for Alzheimer's disease--a 48 months follow-up analysis
- Trial, AD, NA
*cognitive↑, led to a stabilization of cognitive functions in the study group
*other↝, In patients with mild dementia (ADAScog < 15), the disease progressed extremely slowly (ADAScog: +1.2 points/year, MMSE: -0.6 points/year), in patients with moderate dementia at approximately twice the rate.
*neuroP↑, alpha-lipoic acid might be a successful 'neuroprotective' therapy option for AD
*IronCh↑, a-Lipoic acid chelates redox-active transition metals, thus inhibiting the formation of hydroxyl radicals and also scavenges reactive oxygen species (ROS), thereby increasing the levels of reduced glutathione
*ROS↓,
*GSH↑,

3269- ALA,    Sulfur-containing therapeutics in the treatment of Alzheimer’s disease
- NA, AD, NA
*AChE↓, ALA activated AChE and increased glucose uptake, thus providing more acetyl-CoA to generate acetylcholine (ACh). (note activated AChE in this review likely should say inhibited!!!)
*GlucoseCon↑,
*ACC↑,
*GSH↑, ALA increased intracellular GSH levels by chelating redox-active transition metals, thus inhibiting the formation of hydroxyl radicals and Aβ aggregation.
*Aβ↓,
*Catalase↑, Levels of several antioxidant enzymes including catalase, GR, glutathione-S-transferase (GST), NADPH, and quinone oxidoreductase-1 (NQO1) were enhanced by ALA
*GSR↑,
*GSTs↑,
*NADPH↑,
*NQO1↑,
*iNOS↓, LA prevented the induction of iNOS, inhibited TNFα-induced activation of NF-κB [42], levels of which are increased in AD.
*NF-kB↓,
*lipid-P↓, ALA reduced the levels of lipid peroxidation products
*BBB↑, ALA could easily cross the blood–brain barrier (BBB)
*memory↑, ALA treatment significantly improved the spatial memory and cognition capacity of the mice in the Morris water maze and novel object recognition test.
*cognitive↑,
*antiOx↑, antioxidant and anti-inflammatory activities of ALA
*Inflam↓,

3552- ALA,    The dietary fatty acids α-linolenic acid (ALA) and linoleic acid (LA) selectively inhibit microglial nitric oxide production
- in-vitro, AD, BV2
*NO↓, ALA reduced NO without a corresponding reduction of iNOS.
*cognitive↑, select microglial immune functions by ALA and LA could be one of the mechanisms underlying the observed link between certain dietary patterns and AD, such as reduced risk of cognitive decline and dementia associated with the Mediterranean diet.

3551- ALA,    Alpha lipoic acid treatment in late middle age improves cognitive function: Proteomic analysis of the protective mechanisms in the hippocampus
- in-vivo, AD, NA
*cognitive↑, ALA improves cognitive function in ageing mice.
*Apoptosis↓, ALA downregulates apoptosis, and neuroinflammatory associated proteins in ageing mice.
*Inflam↓,
*antiOx↑, Alpha lipoic acid (ALA), a powerful antioxidant, has the potential to relieve age-related cognitive impairment and neurodegenerative disease.
*BioAv↝, Alpha lipoic acid (ALA) is a sulfur-containing and both water-soluble and lipid-soluble coenzyme involved in the energy metabolism of carbohydrates, proteins and lipids
*neuroP↑, neuroprotective action of alpha lipoic acid has been demonstrated in a number of cellular or animal models of Parkinson's disease (PD), AD and amyotrophic lateral sclerosis (ALS) due to its antioxidative and anti-inflammatory properties

3550- ALA,    Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease?
- Review, AD, NA
*antiOx↑, antioxidant and anti-inflammatory properties
*Inflam↓,
*PGE2↓, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6
*COX2↓,
*iNOS↓,
*TNF-α↓,
*IL1β↓,
*IL6↓,
*BioAv↓, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic
*Ach↑, α-LA increases the production of acetylcholine [30], inhibits the production of free radicals [31], and promotes the downregulation of inflammatory processes
*ROS↓,
*cognitive↑, Studies have shown that patients with mild AD who were treated with α-LA showed a slower progression of cognitive impairment
*neuroP↑, α-LA is classified as an ideal neuroprotective antioxidant because of its ability to cross the blood-brain barrier and its uniform uptake profile throughout the central and peripheral nervous systems
*BBB↑,
*Half-Life↓, α-LA presented a mean time to reach the maximum plasma concentration (tmax) of 15 minutes and a mean plasma half-life (t1/2) of 14 minutes
*BioAv↑, LA consumption is recommended 30 minutes before or 2 hours after food intake
*Casp3↓, α-LA had an effect on caspases-3 and -9, reducing the activity of these apoptosis-promoting molecules to basal levels
*Casp9↓,
*ChAT↑, α-LA increased the expression of M2 muscarinic receptors in the hippocampus and M1 and M2 in the amygdala, in addition to ChaT expression in both regions.
*cognitive↑, α-LA acts on these apoptotic signalling pathways, leading to improved cognitive function and attenuation of neurodegeneration.
*eff↑, Based on their results, the authors suggest that treatment with α-LA would be a successful neuroprotective option in AD, at least as an adjuvant to standard treatment with acetylcholinesterase inhibitors.
*cAMP↑, The increase of cAMP caused by α-LA inhibits the release of proinflammatory cytokines, such as IL-2, IFN-γ, and TNF-α.
*IL2↓,
*INF-γ↓,
*TNF-α↓,
*SIRT1↑, Protein expression encoded by SIRT1 showed higher levels after α-LA treatment, especially in liver cells.
*SOD↑, antioxidant enzymes (SOD and GSH-Px) and malondialdehyde (MDA) were analysed by ELISA after 24 h of MCAO, which showed that the enzymatic activities were recovered and MDA was reduced in the α-LA-treated groups i
*GPx↑,
*MDA↓,
*NRF2↑, The ratio of nucleus/cytoplasmic Nrf2 was higher in the α-LA group 40 mg/kg, indicating that the activation of this factor also occurred in a dose-dependent manner

3549- ALA,    Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia
- Review, AD, NA
*Inflam↓, LA and ALA attenuate neuroinflammation by modulating inflammatory signaling.
*other↝, ratio of LA to ALA in typical Western diets is reportedly 8–10:1 or higher, which is rather higher than the ideal ratio of LA to ALA (1–2:1) required to reach the maximal conversion of ALA to its longer chain PUFAs
*other↝, LA and ALA are essential PUFAs that must be obtained from dietary intake because they cannot be synthesized de novo
*neuroP↑, several studies have also suggested that lower dietary intake of LA influences AA metabolism in brain and subsequently causes progressive neurodegenerative disorders
*BioAv↝, LA cannot be synthesized in the human body
*adiP↑, study suggested that LA-rich oil consumption leads to the high levels of adiponectin in the blood [114], which could stimulate mitochondrial function in the liver and skeletal muscles for energy thermogenesis
*BBB↑, Although LA can penetrate the BBB, most of the LA that enters the brain cannot be changed into AA [48,49], and 59 % of the LA that enters the brain is broken down by fatty acid β-oxidation
*Casp6↓, In neurons, LA and ALA attenuate the activation of cleaved caspase-3/-9, p-NF-Kb and the production of TNF-a, IL-6, IL-1b, and ROS by binding GPR40 and GPR120.
*Casp9↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*ROS↓,
*NO↓, LA reduces NO production and inducible nitric oxide synthases (iNOS) protein expression in BV-2 microglia
*iNOS↓,
*COX2↓, ALA increases antioxidant enzyme activities in the brain [182] and inhibits the activation of COX-2 in AD models
*JNK↓, ALA has also been shown to suppress the activation of c-Jun N-terminal kinases (JNKs) and p-NF-kB p65 (Ser536), which is involved in inflammatory signaling
*p‑NF-kB↓,
*Aβ↓, and to inhibit Aβ aggregation and neuronal cell necrosis
*BP↓, LA also improves blood pressure, blood triglyceride and cholesterol levels, and vascular inflammation
*memory↑, One study suggested that long-term intake of ALA enhances memory function by increasing hippocampal neuronal function through activation of cAMP response element-binding protein (CREB) [192], extracellular signal-regulated kinase (ERK), and Akt signa
*cAMP↑,
*ERK↑,
*Akt↑,
cognitive?, Furthermore, ALA administration inhibits Aβ induced neuroinflammation in the cortex and hippocampus and enhances cognitive function

3547- ALA,    Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration
- Review, AD, NA - Review, Park, NA
*memory↑, a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect
*neuroP↑,
*motorD↑, Improved motor dysfunction
*VitC↑, elevates the activities of antioxidants such as ascorbate (vitamin C), α-tocoferol (vitamin E) (Arivazhagan and Panneerselvam, 2000), glutathione (GSH)
*VitE↑,
*GSH↑,
*SOD↑, superoxide dismutase (SOD) activity (Arivazhagan et al., 2002; Cui et al., 2006; Militao et al., 2010), catalase (CAT) (Arivazhagan et al., 2002; Militao et al., 2010), glutathione peroxidase (GSH-Px)
*Catalase↑,
*GPx↑,
*5HT↑, ↑levels of neurotransmitters (dopamine, serotonin and norepinephrine) in various brain regions
*lipid-P↓, ↓ level of lipid peroxidation,
*IronCh↑, ↓cerebral iron levels,
*AChE↓, ↓ AChE activity, ↓ inflammation
*Inflam↓,
*GlucoseCon↑, ↑brain glucose uptake; ↑ in the total GLUT3 and GLUT4 in the old mice;
*GLUT3↑,
*GLUT4↑,
NF-kB↓, authors showed that LA inhibited the stimulation of nuclear factor-κB (NF-κB)
*IGF-1↑, LA restored the parameters of total homocysteine (tHcy), insulin, insulin like growth factor-1 (IGF-1), interlukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Mahboob et al. (2016), analyzed the effects of LA in AlCl3- model of neurodegeneration,
*IL1β↑,
*TNF-α↑,
*cognitive↑, demonstrating its capacity in ameliorating cognitive functions and enhancing cholinergic system functions
*ChAT↑, LA treatment increased the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) relative to AlCl3-treated group.
*HO-1↑, R-LA and S-LA also enhanced expression of genes related to anti-oxidative response such as heme oxygenase-1 (HO-1) and phase II detoxification enzymes such as NAD(P)H:Quinone Oxidoreductase 1 (NQO1).
*NQO1↑,

3546- ALA,    Cognitive and Mood Effect of Alpha-Lipoic Acid Supplementation in a Nonclinical Elder Sample: An Open-Label Pilot Study
- Study, AD, NA
*antiOx↑, (ALA), a known antioxidant compound abundant in vegetables and animal tissues, in reducing oxidative stress in the aging brain and preventing cognitive decline.
*ROS↓,
*cognitive∅, no statistically significant effects either on cognitive function, executive function, or mood were found
*lipid-P↓, ALA has been shown to reduce lipid peroxidation and increase the activity of antioxidant molecules in different areas of the brain of experimental animals
*memory↑, ALA has been suggested to improve memory by increasing the activity of choline acetyltransferase (ChAT)
*ChAT↑,
*Acetyl-CoA↑, a crucial step in the biosynthesis of acetylcholine, in the hippocampi of treated rats
*Aβ↓, ALA administration can inhibit the formation of beta-amyloid fibrils and their expansion, thus exerting a direct effect on a known mechanism involved in neurodegenerative diseases
*BioAv↑, ALA is abundantly present in vegetables and animal tissues [17], is promptly bioavailable, and has no known toxic effects on animals and human subjects
*BBB↑, ALA has been demonstrated to successfully cross the blood–brain barrier in animal models
*toxicity∅, and no collateral effects have been observed at the oral daily doses currently employed as supplements (from 50 to 2400 mg/day)

3545- ALA,    Potential therapeutic effects of alpha lipoic acid in memory disorders
- Review, AD, NA
*neuroP↑, potential therapeutic effects for the prevention or treatment of neurodegenerative disease
*Inflam↓, ALA is able to regulate inflammatory cell infiltration into the central nervous system and to down-regulate VCAM-1 and human monocyte adhesion to epithelial cells
*VCAM-1↓, down-regulate vascular cell adhesion molecule-1 (VCAM-1) and the human monocyte adhesion to epithelial cells
*5HT↑, ALA is able to improve the function of the dopamine, serotonin and norepinephrine neurotransmitters
*memory↑, scientific evidence shows that ALA possesses the ability to improve memory capacity in a number of experimental neurodegenerative disease models and in age-related cognitive decline in rodents
*BioAv↝, Between 27 and 34% of the oral intake is available for tissue absorption; the liver is one of the main clearance organs on account of its high absorption and storage capacity
*Half-Life↓, The plasma half-life of ALA is approximately 30 minutes. Peak urinary excretion occurs 3-6 hours after intake.
*NF-kB↓, As an inhibitor of NF-κβ, ALA has been studied in cytokine-mediated inflammation
*antiOx↑, In addition to the direct antioxidant properties of ALA, some studies have shown that both ALA and DHLA and a great capacity to chelate redox-active metals, such as copper, free iron, zinc and magnesium, albeit in different ways (
*IronCh↑, ALA is able to chelate transition metal ions and, therefore, modulate the iron- and copper-mediated oxidative stress in Alzheimer’s plaques
*ROS↓, iron and copper chelation with DHLA may explain the low level of free radical damage in the brain and the improvement in the pathobiology of Alzheimer’s Disease
*ATP↑, ALA may increase the mitochondrial synthesis of ATP in the brain of elderly rats, thereby increasing the activity of the mitochondrial enzymes
*ChAT↑, ALA may also play a role in the activation of the choline acetyltransferase enzyme (ChAT), which is essential in the anabolism of acetylcholine
*Ach↑,
*cognitive↑, One experimental study has shown that in rats that had been administered ALA there was an inversion in the cognitive dysfunction with an increase in ChAT activity in the hippocampus
*lipid-P↓, administration of ALA reduces lipid peroxidation in different areas of the brain and increases the activity of antioxidants such as ascorbate (vitamin C), α-tocopherol (vitamin E), glutathione,
*VitC↑,
*VitE↑,
*GSH↑,
*SOD↑, and also the activity of superoxide dismutase, catalase, glutathione-peroxidase, glutathione-reductase, glucose-6-P-dehydrogenase
*Catalase↑,
*GPx↑,
*Aβ↓, Both ALA and DHLA have been seen to inhibit the formation of Aβ fibrils

3544- ALA,    Alpha lipoic acid for dementia
- Review, AD, NA
*antiOx↑, ALA is a low molecular weight antioxidant, readily absorbed from the diet or an oral dose, and crosses the blood brain barrier
*BBB↑,
*VitC↑, DHLA regenerates through redox cycling other antioxidants like vitamin C and E and raises levels of intracellular glutathione, an important thiol antioxidant
*VitE↑,
*GSH↑,
*IronCh↑, ALA al- so chelates certain metals, forming stable complexes with copper, manganese and zinc (Sigel 1978)
*neuroP↑, ALA would seem an ideal candidate as an antioxidant agent in neurodegenerative diseases.
*NO↓, ALA also modulates nitric oxide levels in brain and neural tissue, which may have effects in neurodegeneration, learning, cognition, and aging (Gross 1995)
*cognitive↑, elderly patients with dementia were given ALA. Findings suggested a stabilization of cognitive functions in the study group,
*AntiAge↑,
*memory↑, ALA has gained considerable attention following studies demonstrating partial reversal of memory loss in aged rats.
*ROS↓, scavenging hy- droxyl or superoxide radicals (Suzuki 1991) and by scavenging per- oxyl radicals (

3543- ALA,    The Effect of Lipoic Acid Therapy on Cognitive Functioning in Patients with Alzheimer's Disease
- Study, AD, NA
*cognitive↑, Our study suggests that ALA therapy could be effective in slowing cognitive decline in patients with AD and IR.
*antiOx↑, Alpha-lipoic acid (ALA) is a naturally occurring disulfide molecule with antioxidant and anti-inflammatory properties.
*Inflam↓,
*neuroP↑, ALA plays many different roles in pathogenic pathways of dementia, acting as a neuroprotective agent.
*Ach↑, It increases acetylcholine production, inhibits hydroxyl radical production, and increases the process of getting rid of reactive oxygen species.
*ROS↓,
*GlucoseCon↑, (ii) increased glucose uptake, supplying more acetyl-CoA for the production of Ach;
*lipid-P↓, (v) scavenging lipid peroxidation products;
*GSH↑, (vi) inducing enzymes of glutathione synthesis
*Acetyl-CoA↑,

3539- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*ROS↓, scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age.
*IronCh↑, LA preferentially binds to Cu2+, Zn2+ and Pb2+, but cannot chelate Fe3+, while DHLA forms complexes with Cu2+, Zn2+, Pb2+, Hg2+ and Fe3+
*GSH↑,
*antiOx↑, LA has long been touted as an antioxidant
*NRF2↑, activate Phase II detoxification via the transcription factor Nrf2
*MMP9↓, lower expression of MMP-9 and VCAM-1 through repression of NF-kappa-B.
*VCAM-1↓,
*NF-kB↓,
*cognitive↑, it has been used to improve age-associated cardiovascular, cognitive, and neuromuscular deficits, and has been implicated as a modulator of various inflammatory signaling pathways
*Inflam↓,
*BioAv↝, LA bioavailability may be dependent on multiple carrier proteins.
*BioAv↝, observed that approximately 20-40% was absorbed [
*BBB↑, LA has been shown to cross the blood-brain barrier in a limited number of studies
*H2O2∅, Neither species is active against hydrogen peroxide
*neuroP↑, chelation of iron and copper in the brain had a positive effect in the pathobiology of Alzheimer’s Disease by lowering free radical damage
*PKCδ↑, In addition to PKCδ, LA activates Erk1/2 [92, 93], p38 MAPK [94], PI3 kinase [94], and Akt [94-97].
*ERK↑,
*MAPK↑,
*PI3K↑,
*Akt↑,
*PTEN↓, LA decreases the activities of Protein Tyrosine Phosphatase 1B [99], Protein Phosphatase 2A [95], and the phosphatase and tensin homolog PTEN
*AMPK↑, LA activates peripheral AMPK
*GLUT4↑, In skeletal muscle, LA is proposed to recruit GLUT4 from its storage site in the Golgi to the sarcolemma, so that glucose uptake is stimulated by the local increase in transporter abundance.
*GlucoseCon↑,
*BP↝, Feeding LA to hypertensive rats normalized systolic blood pressure and cytosolic free Ca2+
*eff↑, Clinically, LA administration (in combination with acetyl-L-carnitine) showed some promise as an antihypertensive therapy by decreasing systolic pressure in high blood pressure patients and subjects with the metabolic syndrome
*ICAM-1↓, decreased demyelination and spinal cord expression of adhesion molecules (ICAM-1 and VCAM-1)
*VCAM-1↓,
*Dose↝, Considering the transient cellular accumulation of LA following an oral dose, which does not exceed low micromolar levels, it is entirely possible that some of the cellular effects of LA when given at supraphysiological concentrations may be not be c


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 18

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AntiCan↑,1,   cognitive?,1,   EGFR↓,1,   Glycolysis↓,1,   NF-kB↓,1,   other↝,1,   OXPHOS↓,1,   p27↑,1,   PDH↑,1,   ROS↓,1,   ROS↑,1,   TumCCA↑,1,  
Total Targets: 13

Results for Effect on Normal Cells:
5HT↑,2,   ACC↑,1,   Acetyl-CoA↑,3,   Ach↑,6,   AChE↓,2,   adiP↑,1,   Akt↑,3,   AMPK↑,2,   AntiAge↑,3,   AntiCan↑,1,   antiOx↑,13,   Apoptosis↓,1,   ATP↑,2,   Aβ↓,6,   BBB↑,9,   BioAv↓,2,   BioAv↑,2,   BioAv↝,6,   BP↓,1,   BP↝,1,   Ca+2↓,1,   cAMP↑,2,   cardioP↓,1,   cardioP↑,2,   Casp3↓,1,   Casp6↓,1,   Casp9↓,2,   Catalase↑,3,   ChAT↑,6,   cognitive↑,17,   cognitive∅,1,   COX2↓,2,   Dose↝,1,   eff↓,1,   eff↑,3,   eNOS↑,1,   ERK↑,3,   glucose↑,1,   GlucoseCon↑,7,   GLUT1↑,1,   GLUT3↑,2,   GLUT4↑,4,   GPx↑,3,   GSH↑,11,   GSR↑,1,   GSTs↑,1,   GutMicro↑,1,   H2O2∅,1,   Half-Life↓,3,   hepatoP↑,1,   Hif1a↑,1,   HO-1↑,2,   ICAM-1↓,1,   IGF-1↑,1,   IL1β↓,2,   IL1β↑,1,   IL2↓,1,   IL6↓,2,   INF-γ↓,1,   Inflam↓,13,   iNOS↓,3,   IronCh↑,9,   JNK↓,1,   lipid-P↓,6,   MAPK↑,2,   MDA↓,1,   memory↑,9,   MMP↑,1,   MMP9↓,2,   motorD↑,2,   NADPH↑,1,   neuroP↑,14,   NF-kB↓,4,   p‑NF-kB↓,1,   NO↓,3,   NQO1↑,2,   NRF2↑,6,   other↝,3,   p38↑,1,   PDH↑,1,   PDKs↓,1,   PGE2↓,1,   PI3K↑,2,   PKCδ↑,2,   PTEN↓,2,   ROS↓,12,   ROS↑,1,   SIRT1↑,1,   SOD↑,3,   p‑tau↓,1,   TNF-α↓,3,   TNF-α↑,1,   toxicity∅,1,   VCAM-1↓,5,   VEGF↑,1,   VitC↑,3,   VitE↑,3,   Weight↓,1,  
Total Targets: 98

Scientific Paper Hit Count for: cognitive, cognitive
18 Alpha-Lipoic-Acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:557  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page