condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CSCs, Cancer Stem Cells: Click to Expand ⟱
Source:
Type:
Cancer Stem Cells


Scientific Papers found: Click to Expand⟱
3436- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel
- in-vitro, BC, MCF-7
ChemoSen↑, LA also enhanced the sensitivity of breast cancer spheroids to doxorubicin (Dox), demonstrating a synergistic effect.
PI3K↓, LA inhibits PI3K/AKT signaling in breast cancer spheroids
Akt↓,
ATP↓, found that LA markedly reduced both ATP levels and glucose uptake
GlucoseCon↓,
ROS↑, LA also induced ROS generation in both MCF-7 and MDA-MB231 spheroids
PKM2↓, LA downregulated the expression of PKM2 and LDHA in the spheroids, indicating an inhibition of glycolysis in BCSCs
Glycolysis↓,
CSCs↓,
IGF-1R↓, LA inhibits IGF-1R via furin downregulation, synergizes with other anticancer drugs like paclitaxel and cisplatin, and enhances radiosensitivity in breast cancer
Furin↓,
RadioS↑,

3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Lipoic acid inhibits breast cancer cell growth via accumulation of autophagosomes.
Glycolysis↓, Lipoic acid inhibits glycolysis in breast cancer cells.
ROS↑, Lipoic acid induces ROS production in breast cancer cells/BCSC.
CSCs↓, Here, we demonstrate that LA inhibits mammosphere formation and subpopulation of BCSCs
selectivity↑, In contrast, LA at similar doses. had no significant effect on the cell viability of the human embryonic kidney cell line (HEK-293)
LC3B-II↑, LA treatment (0.5 mM and 1.0 mM) increased the expression level of LC3B-I to LC3B-II in both MCF-7 and MDA-MB231cells at 48 h
MMP↓, LA induced mitochondrial ROS levels, decreased mitochondria complex I activity, and MMP in both MCF-7 and MDA-MB231 cells
mitResp↓, In MCF-7 cells, we found a substantial reduction in maximal respiration and ATP production at 0.5 mM and 1 mM of LA treatment after 48 h
ATP↓,
OCR↓, LA at 2.5 mM decreased OCR
NAD↓, we found that LA (0.5 mM and 1 mM) significantly reduced ATP production and NAD levels in MCF-7 and MDA-MB231 cells
p‑AMPK↑, LA treatment (0.5 mM and 1.0 mM) increased p-AMPK levels;
GlucoseCon↓, LA (0.5 mM and 1 mM) significantly decreased glucose uptake and lactate production in MCF-7, whereas LA at 1 mM significantly reduced glucose uptake and lactate production in MDA-MB231 cells but it had no effect at 0.5 mM
lactateProd↓,
HK2↓, LA reduced hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) expression in MCF-7 and MDA-MB231 cells
PFK↓,
LDHA↓,
eff↓, Moreover, we found that LA-mediated inhibition of cellular bioenergetics including OCR (maximal respiration and ATP production) and glycolysis were restored by NAC treatment (Fig. 6E and F) which indicates that LA-induced ROS production is responsibl
mTOR↓, LA inhibits mTOR signaling and thereby decreased the p-TFEB levels in breast cancer cells
ECAR↓, LA also inhibits glycolysis as evidenced by decreased glucose uptake, lactate production, and ECAR.
ALDH↓, LA decreased ALDH1 activity, CD44+/CD24-subpopulation, and increased accumulation of autophagosomes possibly due to inhibition of autophagic flux of breast cancer.
CD44↓,
CD24↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   ALDH↓,1,   p‑AMPK↑,1,   ATP↓,2,   CD24↓,1,   CD44↓,1,   ChemoSen↑,1,   CSCs↓,2,   ECAR↓,1,   eff↓,1,   Furin↓,1,   GlucoseCon↓,2,   Glycolysis↓,2,   HK2↓,1,   IGF-1R↓,1,   lactateProd↓,1,   LC3B-II↑,1,   LDHA↓,1,   mitResp↓,1,   MMP↓,1,   mTOR↓,1,   NAD↓,1,   OCR↓,1,   PFK↓,1,   PI3K↓,1,   PKM2↓,1,   RadioS↑,1,   ROS↑,2,   selectivity↑,1,   TumCG↑,1,  
Total Targets: 30

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: CSCs, Cancer Stem Cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:795  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page