condition found
Features: antioxidant, energy production in cell mitochondria |
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid). "Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals. -Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone) -Also done in IV -Decreases ROS production, but also has pro-oxidant role. Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. -It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant. α-lipoic acid possesses excellent silver chelating properties. - ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304 - Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time). - AI (Adequate Intake): 1.1-1.6g/day. - human studies have shown that ALA levels decline significantly with age - 1g of ALA might achieve 500uM in the blood. - ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability. - Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily. - Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight. - single walnut may contain 300mg of ALA - chia oil contains 55-65% ALA. - α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats - ALA is more stable in chia seeds, (2grams of ALA per tablespoon) - ALA degrades when exposed to heat, light, and air. (prone to oxidation) -Note half-life 1-2 hrs. BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: enzyme |
PKM2 (Pyruvate Kinase, Muscle 2) is an enzyme that plays a crucial role in glycolysis, the process by which cells convert glucose into energy. PKM2 is a key regulatory enzyme in the glycolytic pathway, and it is primarily expressed in various tissues, including muscle, brain, and cancer cells. -C-myc is a common oncogene that enhances aerobic glycolysis in the cancer cells by transcriptionally activating GLUT1, HK2, PKM2 and LDH-A -PKM2 has been shown to be overexpressed in many types of tumors, including breast, lung, and colon cancer. This overexpression may contribute to the development and progression of cancer by promoting glycolysis and energy production in cancer cells. -inhibition of PKM2 may cause ATP depletion and inhibiting glycolysis. -PK exists in four isoforms: PKM1, PKM2, PKR, and PKL -PKM2 plays a role in the regulation of glucose metabolism in diabetes. -PKM2 is involved in the regulation of cell proliferation, apoptosis, and autophagy. – Pyruvate kinase catalyzes the final, rate-limiting step of glycolysis, converting phosphoenolpyruvate (PEP) to pyruvate with the production of ATP. – The PKM2 isoform is uniquely regulated and can exist in both highly active tetrameric and less active dimeric forms. – Cancer cells often favor the dimeric form of PKM2 to slow pyruvate production, thereby accumulating upstream glycolytic intermediates that can be diverted into anabolic pathways to support cell growth and proliferation. – Under low oxygen conditions, cancer cells rely on altered metabolic pathways in which PKM2 is a key player. – The shift to aerobic glycolysis (Warburg effect) orchestrated in part by PKM2 helps tumor cells survive and grow in hypoxic conditions. – Elevated expression of PKM2 is frequently observed in many cancer types, including lung, breast, colorectal, and pancreatic cancers. – High levels of PKM2 are often correlated with enhanced tumor aggressiveness, poor differentiation, and advanced clinical stage. PKM2 in carcinogenesis and oncotherapy Inhibitors of PKM2: -Shikonin, Resveratrol, Baicalein, EGCG, Apigenin, Curcumin, Ursolic Acid, Citrate (best known as an allosteric inhibitor of phosphofructokinase-1 (PFK-1), a key rate-limiting enzyme in glycolysis) potential to directly inhibit or modulate PKM2 is less well established Full List of PKM2 inhibitors from Database -key connected observations: Glycolysis↓, lactateProd↓, ROS↑ in cancer cell, while some result for opposite effect on normal cells. Tumor pyruvate kinase M2 modulators Flavonoids effect on PKM2 Compounds name IC50/AC50uM Effect Flavonols 1. Fisetin 0.90uM Inhibition 2. Rutin 7.80uM Inhibition 3. Galangin 8.27uM Inhibition 4. Quercetin 9.24uM Inhibition 5. Kaempferol 9.88uM Inhibition 6. Morin hydrate 37.20uM Inhibition 7. Myricetin 0.51uM Activation 8. Quercetin 3-b- D-glucoside 1.34uM Activation 9. Quercetin 3-D -galactoside 27-107uM Ineffective Flavanons 10. Neoeriocitrin 0.65uM Inhibition 11. Neohesperidin 14.20uM Inhibition 12. Naringin 16.60uM Inhibition 13. Hesperidin 17.30uM Inhibition 14. Hesperitin 29.10uM Inhibition 15. Naringenin 70.80uM Activation Flavanonols 16. (-)-Catechin gallateuM 0.85 Inhibition 17. (±)-Taxifolin 1.16uM Inhibition 18. (-)-Epicatechin 1.33uM Inhibition 19. (+)-Gallocatechin 4-16uM Ineffective Phenolic acids 20. Ferulic 11.4uM Inhibition 21. Syringic and 13.8uM Inhibition 22. Caffeic acid 36.3uM Inhibition 23. 3,4-Dihydroxybenzoic acid 78.7uM Inhibition 24. Gallic acid 332.6uM Inhibition 25. Shikimic acid 990uM Inhibition 26. p-Coumaric acid 22.2uM Activation 27. Sinapinic acids 26.2uM Activation 28. Vanillic 607.9uM Activation |
- | in-vitro, | BC, | MCF-7 |
3434- | ALA,  |   | Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:29 Target#:772 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid