condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


GRP78/BiP, HSPA5: Click to Expand ⟱
Source:
Type:
GRP78 (Pgp, BiP or ERp72) is a central regulator of endoplasmic reticulum (ER) function due to its roles in protein folding and assembly, targeting misfolded protein for degradation, ER Ca(2+)-binding and controlling the activation of trans-membrane ER stress sensors.
-GRP78 protein, a marker for endoplasmic reticulum stress
-GRP78’s role as a master regulator of the unfolded protein response (UPR) and cellular stress responses
The association of P-gp and inhibition of cell death in cancerous cells has also been reported in several studies including in hepatocellular, colorectal, prostate cancer, and gastric cancer. Although counterintuitive due to its prominent role in cancer resistance, P-gp has been linked to favorable prognosis.
ERp72 can promote cancer cell proliferation, migration, and invasion by regulating various signaling pathways, including the PI3K/AKT and MAPK/ERK pathways. Additionally, ERp72 can also inhibit apoptosis (programmed cell death) in cancer cells, which can contribute to tumor progression. Overexpressed in: Breast, lung colorectal, prostrate, ovarian, pancreatic.

-GRP78 is frequently upregulated in a variety of solid tumors and hematological malignancies.
-Overexpression of GRP78 in cancer cells is often regarded as a marker of increased ER stress due to the reduced oxygen and nutrient supply typically encountered in the tumor microenvironment.
-Elevated GRP78 levels can contribute to tumor cell survival by enhancing the adaptive UPR, allowing cancer cells to cope with therapeutic and metabolic stress.



Scientific Papers found: Click to Expand⟱
264- ALA,    α-Lipoic acid induces Endoplasmic Reticulum stress-mediated apoptosis in hepatoma cells
- in-vitro, HCC, FaO
ROS↑,
P53↑,
ER Stress↑,
UPR↑,
CHOP↑,
PDI↑,
GRP78/BiP↑,
GRP58↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
CHOP↑,1,   ER Stress↑,1,   GRP58↓,1,   GRP78/BiP↑,1,   P53↑,1,   PDI↑,1,   ROS↑,1,   UPR↑,1,  
Total Targets: 8

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: GRP78/BiP, HSPA5
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:356  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page