condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, antioxidant potential and free radical scavenging activity.
*ROS↓,
*IronCh↑, Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
*cognitive↑, α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties.
*cardioP↓,
AntiCan↑,
*neuroP↑,
*Inflam↓, α-Lipoic acid can reduce inflammatory markers in patients with heart disease
*BioAv↓, bioavailability in its pure form is low (approximately 30%).
*AntiAge↑, As a dietary supplements α-lipoic acid has become a common ingredient in regular products like anti-aging supplements and multivitamin formulations
*Half-Life↓, it has a half-life (t1/2) of 30 min to 1 h.
*BioAv↝, It should be stored in a cool, dark, and dry environment, at 0 °C for short-term storage (few days to weeks) and at − 20 °C for long-term storage (few months to years).
other↝, Remarkably, neither α-lipoic acid nor dihydrolipoic acid can scavenge hydrogen peroxide, possibly the most abundant second messenger ROS, in the absence of enzymatic catalysis.
EGFR↓, α-Lipoic acid inhibits cell proliferation via the epidermal growth factor receptor (EGFR) and the protein kinase B (PKB), also known as the Akt signaling, and induces apoptosis in human breast cancer cells
Akt↓,
ROS↓, α-Lipoic acid tramps the ROS followed by arrest in the G1 phase of the cell cycle and activates p27 (kip1)-dependent cell cycle arrest via changing of the ratio of the apoptotic-related protein Bax/Bcl-2
TumCCA↑,
p27↑,
PDH↑, α-Lipoic acid drives pyruvate dehydrogenase by downregulating aerobic glycolysis and activation of apoptosis in breast cancer cells, lactate production
Glycolysis↓,
ROS↑, HT-29 human colon cancer cells; It was concluded that α-lipoic acid induces apoptosis by a pro-oxidant mechanism triggered by an escalated uptake of mitochondrial substrates in oxidizable form
*eff↑, Several studies have found that combining α-lipoic acid and omega-3 fatty acids has a synergistic effect in slowing functional and cognitive decline in Alzheimer’s disease
*memory↑, α-lipoic acid inhibits brain weight loss, downregulates oxidative tissue damage resulting in neuronal cell loss, repairs memory and motor function,
*motorD↑,
*GutMicro↑, modulates the gut microbiota without reducing the microbial diversity (

3442- ALA,    α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B - in-vitro, Nor, 3T3
tumCV↓, Notably, α‑LA treatment significantly reduced the cell viability, migration, and invasion of PCa cell lines in a dose‑dependent manner.
TumCMig↓,
TumCI↓,
ROS↑, α‑LA supplementation dramatically increased reactive oxygen species (ROS) levels and HIF‑1α expression, which started the downstream molecular cascade and activated JNK/caspase‑3 signaling pathway
Hif1a↑, The expression of HIF-1α significantly increased following α-LA treatment and was comparable with the changes in ROS.
JNK↑,
Casp↑,
TumCCA↑, arrest of the cell cycle in the S‑phase, which has led to apoptosis of PCa cells
Apoptosis↑,
selectivity↑, Also, the treatment of α‑LA improved bone health by reducing PCa‑mediated bone cell modulation.

298- ALA,  Rad,    Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1
- in-vitro, BC, MDA-MB-231
Apoptosis↑,
P53↑,
p38↑,
NF-kB↑, NF-κB were significantly increased in the ALA+RT group compared to the control
TumCCA↑, G2/M cell cycle arrest.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AntiCan↑,1,   Apoptosis↑,2,   Casp↑,1,   EGFR↓,1,   Glycolysis↓,1,   Hif1a↑,1,   JNK↑,1,   NF-kB↑,1,   other↝,1,   p27↑,1,   p38↑,1,   P53↑,1,   PDH↑,1,   ROS↓,1,   ROS↑,2,   selectivity↑,1,   TumCCA↑,3,   TumCI↓,1,   TumCMig↓,1,   tumCV↓,1,  
Total Targets: 21

Results for Effect on Normal Cells:
AntiAge↑,1,   antiOx↑,1,   BioAv↓,1,   BioAv↝,1,   cardioP↓,1,   cognitive↑,1,   eff↑,1,   GutMicro↑,1,   Half-Life↓,1,   Inflam↓,1,   IronCh↑,1,   memory↑,1,   motorD↑,1,   neuroP↑,1,   ROS↓,1,  
Total Targets: 15

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
3 Alpha-Lipoic-Acid
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page