condition found
Features: antioxidant, energy production in cell mitochondria |
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid). "Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals. -Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone) -Also done in IV -Decreases ROS production, but also has pro-oxidant role. Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. -It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant. α-lipoic acid possesses excellent silver chelating properties. - ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304 - Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time). - AI (Adequate Intake): 1.1-1.6g/day. - human studies have shown that ALA levels decline significantly with age - 1g of ALA might achieve 500uM in the blood. - ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability. - Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily. - Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight. - single walnut may contain 300mg of ALA - chia oil contains 55-65% ALA. - α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats - ALA is more stable in chia seeds, (2grams of ALA per tablespoon) - ALA degrades when exposed to heat, light, and air. (prone to oxidation) -Note half-life 1-2 hrs. BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj(inhibit) CGL-CS |
Type: |
Phosphatidylinositol 3-kinase (PtdIns3K or PI3K) is a family of enzymes that play a crucial role in cell signaling pathways, particularly in the regulation of cell growth, survival, and metabolism. The PI3K pathway is one of the most frequently altered pathways in human cancer.
Inhibition of the PI3K pathway has been explored as a therapeutic strategy for cancer treatment. Several PI3K inhibitors have been developed and are currently being tested in clinical trials. These inhibitors can target specific components of the pathway, such as PI3K, AKT, or mTOR. Class I phosphoinositide 3-kinase (PI3K) Class III PtdIns3K In contrast to the class III PtdIns3K as a positive regulator of autophagy, class I PI3K-AKT signaling has an opposing effect on the initiation of autophagy. PI3K inhibitors include: -Idelalisib , Copanlisib, Alpelisib -LY294002? -Wortmannin: potent PI3K inhibitor, has some associated toxicity. -Quercetin: -Curcumin -Resveratrol -Epigallocatechin Gallate (EGCG) |
3437- | ALA,  |   | Revisiting the molecular mechanisms of Alpha Lipoic Acid (ALA) actions on metabolism |
- | Review, | Var, | NA |
- | in-vitro, | BC, | MCF-7 |
3434- | ALA,  |   | Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
3272- | ALA,  |   | Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential |
- | Review, | AD, | NA |
3539- | ALA,  |   | Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential |
- | Review, | AD, | NA |
285- | ALA,  | HCA,  |   | Tolerance of oral lipoid acid and hydroxycitrate combination in cancer patients: first approach of the cancer metabolism research group |
- | Human, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:29 Target#:252 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid