condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
3441- ALA,    α-Lipoic Acid Maintains Brain Glucose Metabolism via BDNF/TrkB/HIF-1α Signaling Pathway in P301S Mice
- in-vivo, AD, NA
*tau↓, α-lipoic acid (LA), which is a naturally occurring cofactor in mitochondrial, has been shown to have properties that can inhibit the tau pathology and neuronal damage in our previous research
*GlucoseCon↑, chronic LA administration significantly increased glucose availability by elevating glucose transporter 3 (GLUT3), GLUT4, vascular endothelial growth factor (VEGF) protein and mRNA level, and heme oxygenase-1 (HO-1) protein level in P301S mouse brain
*GLUT3↑,
*GLUT4↑,
*VEGF↑,
*HO-1↑,
*Glycolysis↑, LA also promoted glycolysis by directly upregulating hexokinase (HK) activity, indirectly by increasing proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and DNA repair enzymes (OGG1/2 and MTH1).
*HK1↑, Our results indicated that the activity of HK was significantly increased after 10 mg/kg LA treatment.
*PGC-1α↑,
*Hif1a↑, found the underlying mechanism of restored glucose metabolism might involve in the activation of brain-derived neurotrophic factor (BDNF)/tyrosine Kinase receptor B (TrkB)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway by LA treatment.
*neuroP↑,

3271- ALA,    Decrypting the potential role of α-lipoic acid in Alzheimer's disease
- Review, AD, NA
*antiOx↑, Alpha-lipoic acid (α-LA), a natural antioxidant
*memory↑, multiple preclinical studies indicating beneficial effects of α-LA in memory functioning, and pointing to its neuroprotective effects
*neuroP↑, α-LA could be considered neuroprotective
*Inflam↓, α-LA shows antioxidant, antiapoptotic, anti-inflammatory, glioprotective, metal chelating properties in both in vivo and in vitro studies.
*IronCh↑, α-LA leads to a marked downregulation in iron absorption and active iron reserve inside the neuron
*NRF2↑, α-LA induces the activity of the nuclear factor erythroid-2-related factor (Nrf2), a transcription factor.
*BBB↑, capable of penetrating the BBB
*GlucoseCon↑, Fig 2, α-LA mediated regulation of glucose uptake
*Ach↑, α-LA may show its action on the activity of the ChAT enzyme, which is an essential enzyme in acetylcholine metabolism
*ROS↓,
*p‑tau↓, decreased degree of tau phosphorylation following treatment with α-LA
*Aβ↓, α-LA possibly induce the solubilization of Aß plaques in the frontal cortex
*cognitive↑, cognitive reservation of α-LA served AD model was markedly upgraded in additional review
*Hif1a↑, α-LA treatment efficaciously induces the translocation and activity of hypoxia-inducible factor-1α (HIF-1α),
*Ca+2↓, research found that α-LA therapy remarkably declines Ca2+ concentration and calpain signaling
*GLUT3↑, inducing the downstream target genes expression, such as GLUT3, GLUT4, HO-1, and VEGF.
*GLUT4↑,
*HO-1↑,
*VEGF↑,
*PDKs↓, α-LA also ameliorates survival in mutant mice of Huntington's disease [150–151], possibly due to the inhibition of the activity of pyruvate dehydrogenase kinase
*PDH↑, α-LA administration enhances PDH expression in mitochondrial hepatocytes by inhibiting the pyruvate dehydrogenase kinase (PDK),
*VCAM-1↓, α-LA inhibits the expression of cell-cell adhesion molecule-1 and VCAM-1 in spinal cords and TNF-α induced neuronal endothelial cells injury
*GSH↑, α-LA may enhance glutathione production in old-aged models
*NRF2↑, activation of the Nrf2 signaling by α-LA
*hepatoP↑, α-LA also protected the liver against oxidative stress-mediated hepatotoxicity
*ChAT↑, α-LA in mice models may prevent neuronal injury possibly due to an increase in ChAT in the hippocampus of animal models

3455- ALA,    Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis
- in-vitro, Nor, HUVECs
*cMyc↓, The expressions of C-Myc, VEGF, and eNOS and phosphorylation of focal adhesion kinase were reduced by LA.
*VEGF↓,
*eNOS↓,
angioG↓, LA might represent a viable therapeutic potential for human diseases that involve high angiogenic activities such as cancers.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,  
Total Targets: 1

Results for Effect on Normal Cells:
Ach↑,1,   antiOx↑,1,   Aβ↓,1,   BBB↑,1,   Ca+2↓,1,   ChAT↑,1,   cMyc↓,1,   cognitive↑,1,   eNOS↓,1,   GlucoseCon↑,2,   GLUT3↑,2,   GLUT4↑,2,   Glycolysis↑,1,   GSH↑,1,   hepatoP↑,1,   Hif1a↑,2,   HK1↑,1,   HO-1↑,2,   Inflam↓,1,   IronCh↑,1,   memory↑,1,   neuroP↑,2,   NRF2↑,2,   PDH↑,1,   PDKs↓,1,   PGC-1α↑,1,   ROS↓,1,   tau↓,1,   p‑tau↓,1,   VCAM-1↓,1,   VEGF↓,1,   VEGF↑,2,  
Total Targets: 32

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
3 Alpha-Lipoic-Acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page