condition found
Features: antioxidant, energy production in cell mitochondria |
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid). "Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals. -Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone) -Also done in IV -Decreases ROS production, but also has pro-oxidant role. Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. -It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant. α-lipoic acid possesses excellent silver chelating properties. - ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304 - Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time). - AI (Adequate Intake): 1.1-1.6g/day. - human studies have shown that ALA levels decline significantly with age - 1g of ALA might achieve 500uM in the blood. - ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability. - Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily. - Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight. - single walnut may contain 300mg of ALA - chia oil contains 55-65% ALA. - α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats - ALA is more stable in chia seeds, (2grams of ALA per tablespoon) - ALA degrades when exposed to heat, light, and air. (prone to oxidation) -Note half-life 1-2 hrs. BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues. Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance Factors that affect selectivity: 1. Ability of Cancer cells to preferentially absorb a product/drug -EPR-enhanced permeability and retention of cancer cells -nanoparticle formations/carriers may target cancer cells over normal cells -Liposomal formations. Also negatively/positively charged affects absorbtion 2. Product/drug effect may be different for normal vs cancer cells - hypoxia - transition metal content levels (iron/copper) change probability of fenton reaction. - pH levels - antiOxidant levels and defense levels 3. Bio-availability |
3442- | ALA,  |   | α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
- | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B | - | in-vitro, | Nor, | 3T3 |
3454- | ALA,  |   | Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
278- | ALA,  |   | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
- | Review, | NA, | NA |
375- | SNP,  | ALA,  |   | Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer |
- | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vivo, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:29 Target#:1110 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid