condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


EMT, Epithelial-Mesenchymal Transition: Click to Expand ⟱
Source:
Type:
Biological process in which epithelial cells lose their cell polarity and cell-cell adhesion properties and gain mesenchymal traits, such as increased motility and invasiveness. This process is pivotal during embryogenesis and wound healing. Hh signaling pathway is able to regulate the EMT. Snail, E-cadherin and N-cadherin, key components of EMT; EMT-related factors, E-cadherin, N-cadherin, vimentin; The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin.
EMT is regulated by various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog pathways. Transcription factors such as Snail, Slug, Twist, and ZEB play critical roles in repressing epithelial markers (like E-cadherin) and promoting mesenchymal markers (like N-cadherin and vimentin).
EMT is associated with increased tumor aggressiveness, enhanced migratory and invasive capabilities, and resistance to apoptosis.


Scientific Papers found: Click to Expand⟱
284- ALA,    Lipoic acid a multi-level molecular inhibitor of tumorigenesis
- Review, Var, NA
EMT↓,
TumMeta↓,

278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, direct anticancer effect of the antioxidant ALA is manifested as an increase in intracellular ROS levels in cancer cells
NRF2↑, enhance the activity of the anti-inflammatory protein nuclear factor erythroid 2–related factor 2 (Nrf2), thereby reducing tissue damage
Inflam↓,
frataxin↑,
*BioAv↓, Oral ALA has a bioavailability of approximately 30% due to issues such as poor stability in the stomach, low solubility, and hepatic degradation.
ChemoSen↑, ALA can enhance the functionality of various other anticancer drugs, including 5-fluorouracil in colon cancer cells and cisplatin in MCF-7 breast cancer cells
Hif1a↓, it is inferred that lipoic acid may inhibit the expression of HIF-1α
eff↑, act as a synergistic agent with natural polyphenolic substances such as apigenin and genistein
FAK↓, ALA inhibits FAK activation by downregulating β1-integrin expression and reduces the levels of MMP-9 and MMP-2
ITGB1↓,
MMP2↓,
MMP9↓,
EMT↓, ALA inhibits the expression of EMT markers, including Snail, vimentin, and Zeb1
Snail↓,
Vim↓,
Zeb1↓,
P53↑, ALA also stimulates the mutant p53 protein and depletes MGMT
MGMT↓, depletes MGMT by inhibiting NF-κB signalling, thereby inducing apoptosis
Mcl-1↓,
Bcl-xL↓,
Bcl-2↓,
survivin↓,
Casp3↑,
Casp9↑,
BAX↑,
p‑Akt↓, ALA inhibits the activation of tumour stem cells by reducing Akt phosphorylation.
GSK‐3β↓, phosphorylation and inactivation of GSK3β
*antiOx↑, indirect antioxidant protection through metal chelation (ALA primarily binds Cu2+ and Zn2+, while DHLA can bind Cu2+, Zn2+, Pb2+, Hg2+, and Fe3+) and the regeneration of certain endogenous antioxidants, such as vitamin E, vitamin C, and glutathione
*ROS↓, ALA can directly quench various reactive species, including ROS, reactive nitrogen species, hydroxyl radicals (HO•), hypochlorous acid (HclO), and singlet oxygen (1O2);
selectivity↑, In normal cells, ALA acts as an antioxidant by clearing ROS. However, in cancer cells, it can exert pro-oxidative effects, inducing pathways that restrict cancer progression.
angioG↓, Combining these two hypotheses, it can be hypothesized that ALA may regulate copper and HIF-2α to limit tumor angiogenesis.
MMPs↓, ALA was shown to inhibit invasion by decreasing the mRNA levels of key matrix metalloproteinases (MMPs), specifically MMP2 and MMP9, which are crucial for the metastatic process
NF-kB↓, ALA has been shown to enhance the efficacy of the chemotherapeutic drug paclitaxel in breast and lung cancer cells by inhibiting the NF-κB signalling pathway and the functions of integrin β1/β3 [138,139]
ITGB3↓,
NADPH↓, ALA has been shown to inhibit NADPH oxidase, a key enzyme closely associated with NP, including NOX4

276- ALA,    Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B
P53↑,
EMT↓,
AMPK↑,
cycD1↓,
TumCMig↓, only in HCC cells that express wild type p53

1124- ALA,    Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, HTH-83 - in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, FTC-133 - in-vivo, NA, NA
TumCP↓,
AMPK↑,
mTOR↓,
TumCMig↓,
TumCI↓,
EMT↓,
E-cadherin↑,
β-catenin/ZEB1↓,
Vim↓,
Snail↓,
Twist↓,
TGF-β↓,
p‑SMAD2↓,
TumCG↓, mouse model


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,1,   AMPK↑,2,   angioG↓,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   Casp3↑,1,   Casp9↑,1,   ChemoSen↑,1,   cycD1↓,1,   E-cadherin↑,1,   eff↑,1,   EMT↓,4,   FAK↓,1,   frataxin↑,1,   GSK‐3β↓,1,   Hif1a↓,1,   Inflam↓,1,   ITGB1↓,1,   ITGB3↓,1,   Mcl-1↓,1,   MGMT↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   NADPH↓,1,   NF-kB↓,1,   NRF2↑,1,   P53↑,2,   ROS↑,1,   selectivity↑,1,   p‑SMAD2↓,1,   Snail↓,2,   survivin↓,1,   TGF-β↓,1,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,2,   TumCP↓,1,   TumMeta↓,1,   Twist↓,1,   Vim↓,2,   Zeb1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 45

Results for Effect on Normal Cells:
antiOx↑,1,   BioAv↓,1,   ROS↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: EMT, Epithelial-Mesenchymal Transition
4 Alpha-Lipoic-Acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:96  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page