condition found
Features: antioxidant, energy production in cell mitochondria |
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid). "Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals. -Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone) -Also done in IV -Decreases ROS production, but also has pro-oxidant role. Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. -It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant. α-lipoic acid possesses excellent silver chelating properties. - ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304 - Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time). - AI (Adequate Intake): 1.1-1.6g/day. - human studies have shown that ALA levels decline significantly with age - 1g of ALA might achieve 500uM in the blood. - ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability. - Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily. - Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight. - single walnut may contain 300mg of ALA - chia oil contains 55-65% ALA. - α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats - ALA is more stable in chia seeds, (2grams of ALA per tablespoon) - ALA degrades when exposed to heat, light, and air. (prone to oxidation) -Note half-life 1-2 hrs. BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑">Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Caspases are a cysteine protease that speed up a chemical reaction via pointing their target substrates following an aspartic acid residue.1 They are grouped into apoptotic (caspase-2, 3, 6, 7, 8, 9 and 10) and inflammatory (caspase-1, 4, 5, 11 and 12) mediated caspases. Caspase-1 may have both tumorigenic or antitumorigenic effects on cancer development and progression, but it depends on the type of inflammasome, methodology, and cancer. Catalase is an enzyme found in nearly all living cells exposed to oxygen. Its primary role is to protect cells from oxidative damage by catalyzing the conversion of hydrogen peroxide (H₂O₂), a potentially damaging byproduct of metabolism, into water (H₂O) and oxygen (O₂). This detoxification process is crucial because excess H₂O₂ can lead to the formation of reactive oxygen species (ROS) that damage proteins, lipids, and DNA. Catalase and Cancer Oxidative Stress and Cancer: Cancer cells often experience increased levels of oxidative stress due to rapid proliferation and metabolic changes. This stress can lead to DNA damage, promoting tumorigenesis. Catalase helps mitigate oxidative stress, and its expression can influence the survival and proliferation of cancer cells. Expression Levels in Different Cancers: Overexpression: In some cancers, such as breast cancer and certain types of leukemia, catalase may be overexpressed. This overexpression can help cancer cells survive in oxidative environments, potentially leading to more aggressive tumor behavior. Downregulation: Conversely, in other cancers, such as colorectal cancer, reduced catalase expression has been observed. This downregulation can lead to increased oxidative stress, contributing to tumor progression and metastasis. Prognostic Implications: Survival Rates: Studies have shown that high levels of catalase expression can be associated with poor prognosis in certain cancers, as it may enable cancer cells to resist apoptosis (programmed cell death) induced by oxidative stress. Some types of cancer cells have been reported to exhibit lower catalase activity, possibly increasing their vulnerability to oxidative damage under certain conditions. This vulnerability has even been exploited in some therapeutic strategies (for example, approaches that generate excess H₂O₂ or other ROS specifically targeting cancer cells have been researched). |
3439- | ALA,  |   | The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles |
- | in-vitro, | NA, | NA |
3269- | ALA,  |   | Sulfur-containing therapeutics in the treatment of Alzheimer’s disease |
- | NA, | AD, | NA |
3547- | ALA,  |   | Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration |
- | Review, | AD, | NA | - | Review, | Park, | NA |
3545- | ALA,  |   | Potential therapeutic effects of alpha lipoic acid in memory disorders |
- | Review, | AD, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:29 Target#:46 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid