condition found tbRes List
ALA, Alpha-Lipoic-Acid: Click to Expand ⟱
Features: antioxidant, energy production in cell mitochondria
Alpha-Lipoic-Acid: also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)
-Also done in IV
-Decreases ROS production, but also has pro-oxidant role.
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.

α-lipoic acid possesses excellent silver chelating properties.

- ALA acts as pro-Oxidant only in cancer cells:#278 - Pro-Oxidant Dose margin >100uM:#304

- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).
- AI (Adequate Intake): 1.1-1.6g/day.
- human studies have shown that ALA levels decline significantly with age
- 1g of ALA might achieve 500uM in the blood.
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.
- single walnut may contain 300mg of ALA
- chia oil contains 55-65% ALA.
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)

-Note half-life 1-2 hrs.
BioAv 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, VEGF↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- small indication of inhibiting Cancer Stem Cells : CSC↓, CD24↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ECAR, Extracellular Acidification Rate: Click to Expand ⟱
Source:
Type:
ECAR (Extracellular Acidification Rate) is a measure of the rate at which cells release acidic byproducts, such as lactic acid, into the extracellular environment. In the context of cancer, ECAR is often used as a proxy for glycolytic activity, as cancer cells often exhibit increased glycolysis, even in the presence of oxygen.

Studies have shown that cancer cells often have a higher ECAR compared to normal cells, indicating that they are producing more acidic byproducts. This is thought to be due to the fact that cancer cells often rely more heavily on glycolysis for energy production, even in the presence of oxygen.
-ECAR reflects the glycolysis activity



Scientific Papers found: Click to Expand⟱
3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Lipoic acid inhibits breast cancer cell growth via accumulation of autophagosomes.
Glycolysis↓, Lipoic acid inhibits glycolysis in breast cancer cells.
ROS↑, Lipoic acid induces ROS production in breast cancer cells/BCSC.
CSCs↓, Here, we demonstrate that LA inhibits mammosphere formation and subpopulation of BCSCs
selectivity↑, In contrast, LA at similar doses. had no significant effect on the cell viability of the human embryonic kidney cell line (HEK-293)
LC3B-II↑, LA treatment (0.5 mM and 1.0 mM) increased the expression level of LC3B-I to LC3B-II in both MCF-7 and MDA-MB231cells at 48 h
MMP↓, LA induced mitochondrial ROS levels, decreased mitochondria complex I activity, and MMP in both MCF-7 and MDA-MB231 cells
mitResp↓, In MCF-7 cells, we found a substantial reduction in maximal respiration and ATP production at 0.5 mM and 1 mM of LA treatment after 48 h
ATP↓,
OCR↓, LA at 2.5 mM decreased OCR
NAD↓, we found that LA (0.5 mM and 1 mM) significantly reduced ATP production and NAD levels in MCF-7 and MDA-MB231 cells
p‑AMPK↑, LA treatment (0.5 mM and 1.0 mM) increased p-AMPK levels;
GlucoseCon↓, LA (0.5 mM and 1 mM) significantly decreased glucose uptake and lactate production in MCF-7, whereas LA at 1 mM significantly reduced glucose uptake and lactate production in MDA-MB231 cells but it had no effect at 0.5 mM
lactateProd↓,
HK2↓, LA reduced hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) expression in MCF-7 and MDA-MB231 cells
PFK↓,
LDHA↓,
eff↓, Moreover, we found that LA-mediated inhibition of cellular bioenergetics including OCR (maximal respiration and ATP production) and glycolysis were restored by NAC treatment (Fig. 6E and F) which indicates that LA-induced ROS production is responsibl
mTOR↓, LA inhibits mTOR signaling and thereby decreased the p-TFEB levels in breast cancer cells
ECAR↓, LA also inhibits glycolysis as evidenced by decreased glucose uptake, lactate production, and ECAR.
ALDH↓, LA decreased ALDH1 activity, CD44+/CD24-subpopulation, and increased accumulation of autophagosomes possibly due to inhibition of autophagic flux of breast cancer.
CD44↓,
CD24↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
ALDH↓,1,   p‑AMPK↑,1,   ATP↓,1,   CD24↓,1,   CD44↓,1,   CSCs↓,1,   ECAR↓,1,   eff↓,1,   GlucoseCon↓,1,   Glycolysis↓,1,   HK2↓,1,   lactateProd↓,1,   LC3B-II↑,1,   LDHA↓,1,   mitResp↓,1,   MMP↓,1,   mTOR↓,1,   NAD↓,1,   OCR↓,1,   PFK↓,1,   ROS↑,1,   selectivity↑,1,   TumCG↑,1,  
Total Targets: 23

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: ECAR, Extracellular Acidification Rate
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:29  Target#:847  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page