condition found
Features: |
Chrysin is found in passion flower and honey. It is a flavonoid. -To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary. -Note half-life 2 hrs, BioAv very poor Pathways: Graphical Pathways - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress. The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis. The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes. -ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12 |
2790- | CHr,  |   | Chrysin: Pharmacological and therapeutic properties |
- | Review, | Var, | NA |
2792- | CHr,  |   | Chrysin induces death of prostate cancer cells by inducing ROS and ER stress |
- | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
2781- | CHr,  | PBG,  |   | Chrysin a promising anticancer agent: recent perspectives |
- | Review, | Var, | NA |
2782- | CHr,  |   | Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives |
- | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
2785- | CHr,  |   | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:61 Target#:103 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid