condition found
Features: |
Chrysin is found in passion flower and honey. It is a flavonoid. -To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary. -Note half-life 2 hrs, BioAv very poor Pathways: Graphical Pathways - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj (inhibit) |
Type: |
A signal protein produced by many cells that stimulates the formation of blood vessels.
Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer. Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer. |
2797- | CHr,  |   | A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells |
- | in-vivo, | BC, | NA | - | in-vitro, | BC, | 4T1 |
2802- | CHr,  |   | Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis |
- | in-vitro, | Pca, | DU145 | - | in-vivo, | Pca, | NA |
953- | CHr,  |   | Inhibition of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor by Chrysin in a Rat Model of Choroidal Neovascularization |
- | in-vivo, | NA, | NA |
2781- | CHr,  | PBG,  |   | Chrysin a promising anticancer agent: recent perspectives |
- | Review, | Var, | NA |
2782- | CHr,  |   | Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives |
- | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
2784- | CHr,  |   | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
- | Review, | Var, | NA |
2785- | CHr,  |   | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
- | Review, | Var, | NA |
2786- | CHr,  |   | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:61 Target#:334 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid