condition found tbRes List
CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Cyt‑c, cyt-c Release into Cytosol: Click to Expand ⟱
Source:
Type:
Cytochrome c
** The term "release of cytochrome c" ** an increase in level for the cytosol.
Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis.

The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis.
In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death.
Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation.
Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol.
The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death.

On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer.
On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells.
Overexpressed in Breast, Lung, Colon, and Prostrate.
Underexpressed in Ovarian, and Pancreatic.


Scientific Papers found: Click to Expand⟱
2795- CHr,    Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53
- in-vitro, Liver, HepG2
ChemoSen↑, combination chrysin and cisplatin significantly enhanced the apoptosis of Hep G2 cancer cells
P53↑, chrysin and cisplatin increased the phosphorylation and accumulation of p53 through activating ERK1/2 in Hep G2 cells
ERK↑,
BAX↑, which led to the overexpression of the pro-apoptotic proteins Bax and DR5 and the inhibition of the anti-apoptotic protein Bcl-2.
DR5↑,
Bcl-2↓,
Casp8↑, chrysin and cisplatin promoted both extrinsic apoptosis by activating caspase-8 and intrinsic apoptosis by increasing the release of cytochrome c and activating caspase-9 in Hep G2 cells
Cyt‑c↑,
Casp9↑,

2807- CHr,    Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats
- in-vivo, Nor, NA
*antiOx↑, antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic
Inflam↓,
*cardioP↑, Pre-treatment with chrysin of 60 mg/kg reversed the ISO-induced damage to myocardium and prevent cardiac hypertrophy and fibrosis through various anti-inflammatory, anti-apoptotic, antioxidant and anti-fibrotic pathways
*GSH↑, CHY at the highest dose (60 mg/kg) significantly bolstered the antioxidant status :GSH, SOD and CAT
*SOD↑,
*Catalase↑,
*GAPDH↑, significant increase in GAPDH levels was observed in CHYP group in comparison with normal group
*BAX↓, Decrease in apoptotic (Bax), increase in anti-apoptotic (Bcl-2)
*Bcl-2↑,
*PARP↓, expression of downstream signalling proteins, that is, PARP, cytochrome-C and caspase-3 were following the similar pattern. however at CHY 60 mg/kg treatment group, the levels were remarkably (P < 0·001) reduced.
*Cyt‑c↓,
*Casp3↓,
*NOX4↓, Whereas, lower levels of Nox-4 and higher levels of Nrf-2, HO-1 and HSP-70 were observed in CHYP group
*NRF2↑,
*HO-1↑,
*HSP70/HSPA5↑,

2780- CHr,    Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review
- Review, Var, NA
*antiOx↑, antioxidant (13), anti-inflammatory (14), antibacterial (15), anti-hypertensive (16), anti-allergic (17), vasodilator (18),
Inflam↓,
*hepatoP↑, anti-diabetic (19), anti-anxiety (10), anti-viral (20), anti-estrogen (21), liver protective (22), anti-aging (23), anti-seizure (24), and anti-cancer effects (25)
AntiCan↑,
Cyt‑c↑, (1) facilitating the release of cytochrome C from the mitochondria,
Casp3↑, (2) activating caspase-3 and inhibiting the activity of the XIAP molecule,
XIAP↓,
p‑Akt↓, (3) reducing AKT phosphorylation and triggering the PI3K pathway and induction of apoptosis
PI3K↑,
Apoptosis↑,
COX2↓, chrysin interacts weakly with COX-1 binding site whereas displayed a remarkable interaction with COX-2.
FAK↓, ESCC cells: resultant blockage of the FAK/AKT signaling pathways
AMPK↑, A549: activation of AMPK by chrysin contributes to Akt suppression
STAT3↑, 4T1cell: inhibited STAT3 activation
MMP↓, Chrysin induces apoptosis through the intrinsic mitochondrial pathway that disrupts mitochondrial membrane potential (MMP) and increases DNA fragmentation.
DNAdam↑,
BAX↑, produces pro-apoptotic proteins, including Bax and Bak, and activates caspase-9 and caspase-3 in various cancer cells
Bak↑,
Casp9↑,
p38↑, chrysin can inhibit tumor growth by activating P38 MAPK and stopping the cell cycle
MAPK↑,
TumCCA↑,
ChemoSen↑, beneficial in inhibiting chemotherapy resistance of cancer cells
HDAC8↓, chrysin suppresses tumorigenesis by inhibiting histone deacetylase 8 (HDAC8)
Wnt↓, chrysin can attenuate Wnt and NF-κB signaling pathways
NF-kB↓,
angioG↓, chrysin can inhibit angiogenesis and inducing apoptosis in HTh7 cells, 4T1 mice, and MDA-MB-231 cells
BioAv↓, low bioavailability of flavonoids such as chrysin

2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, antioxidant, anti-inflammatory, hepatoprotective, neuroprotective
*Inflam↓, inhibitory effect of chrysin on inflammation and oxidative stress is also important in Parkinson’s disease
*hepatoP↑,
*neuroP↑,
*BioAv↓, Accumulating data demonstrates that poor absorption, rapid metabolism, and systemic elimination are responsible for poor bioavailability of chrysin in humans that, subsequently, restrict its therapeutic effects
*cardioP↑, cardioprotective [69], lipid-lowering effect [70]
*lipidLev↓,
*RenoP↑, Renoprotective
*TNF-α↓, chrysin reduces levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2).
*IL2↓,
*PI3K↓, induction of the PI3K/Akt signaling pathway by chrysin contributes to a reduction in oxidative stress and inflammation during cerebral I/R injury
*Akt↓,
*ROS↓,
*cognitive↑, Chrysin (25, 50, and 100 mg/kg) improves cognitive capacity, inflammation, and apoptosis to ameliorate traumatic brain injury
eff↑, chrysin and silibinin is beneficial in suppressing breast cancer malignancy via decreasing cancer proliferation
cycD1↓, chrysin and silibinin induced cell cycle arrest via down-regulation of cyclin D1 and hTERT
hTERT↓,
VEGF↓, Administration of chrysin is associated with the disruption of hypoxia-induced VEGF gene expression
p‑STAT3↓, chrysin is capable of reducing STAT3 phosphorylation in hypoxic conditions without affecting the HIF-1α protein level.
TumMeta↓, chrysin is a potent agent in suppressing metastasis and proliferation of breast cancer cells during hypoxic conditions
TumCP↓,
eff↑, combination therapy of breast cancer cells using chrysin and metformin exerts a synergistic effect and is more efficient compared to chrysin alone
eff↑, combination of quercetin and chrysin reduced levels of pro-inflammatory factors, such as IL-1β, Il-6, TNF-α, and IL-10, via NF-κB down-regulation.
IL1β↓,
IL6↓,
NF-kB↓,
ROS↑, after chrysin administration, an increase occurs in levels of ROS that, subsequently, impairs the integrity of the mitochondrial membrane, leading to cytochrome C release and apoptosis induction
MMP↓,
Cyt‑c↑,
Apoptosis↑,
ER Stress↑, in addition to mitochondria, ER can also participate in apoptosis
Ca+2↑, Upon chrysin administration, an increase occurs in levels of ROS and cytoplasmic Ca2+ that mediate apoptosis induction in OC cells
TET1↑, In MKN45 cells, chrysin promotes the expression of TET1
Let-7↑, Chrysin is capable of promoting the expression of miR-9 and Let-7a as onco-suppressor factors in cancer to inhibit the proliferation of GC cells
Twist↓, Down-regulation of NF-κB, and subsequent decrease in Twist/EMT are mediated by chrysin administration, negatively affecting cervical cancer metastasis
EMT↓,
TumCCA↑, nduction of cell cycle arrest and apoptosis via up-regulation of caspase-3, caspase-9, and Bax are mediated by chrysin
Casp3↑,
Casp9↑,
BAX↑,
HK2↓, Chrysin administration (15, 30, and 60 mM) reduces the expression of HK-2 in hepatocellular carcinoma (HCC) cells to impair glucose uptake and lactate production.
GlucoseCon↓,
lactateProd↓,
Glycolysis↓, In addition to glycolysis metabolism impairment, the inhibitory effect of chrysin on HK-2 leads to apoptosis
SHP1↑, upstream modulator of STAT3 known as SHP-1 is up-regulated by chrysin
N-cadherin↓, Furthermore, N-cadherin and E-cadherin are respectively down-regulated and up-regulated upon chrysin administration in inhibiting melanoma invasion
E-cadherin↑,
UPR↑, chrysin substantially diminishes survival by ER stress induction via stimulating UPR, PERK, ATF4, and elF2α
PERK↑,
ATF4↑,
eIF2α↑,
RadioS↑, Irradiation combined with chrysin exerts a synergistic effect
NOTCH1↑, Irradiation combined with chrysin exerts a synergistic effect
NRF2↓, in reducing Nrf2 expression, chrysin down-regulates the expression of ERK and PI3K/Akt pathways—leading to an increase in the efficiency of doxorubicin in chemotherapy
BioAv↑, chrysin at the tumor site by polymeric nanoparticles leads to enhanced anti-tumor activity, due to enhanced cellular uptake
eff↑, Chrysin- and curcumin-loaded nanoparticles significantly promote the expression of TIMP-1 and TIMP-2 to exert a reduction in melanoma invasion

2783- CHr,    Apoptotic Effects of Chrysin in Human Cancer Cell Lines
- Review, Var, NA
TumCP↓, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells
Apoptosis↑,
Casp↑, chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells.
PCNA↓, inhibited the growth of cervical cancer cells, HeLa, via apoptosis induction and down-regulated the proliferating cell nuclear antigen (PCNA) in the cells.
p38↑, chrysin potentially induced p38, therefore activated NFkappaB/p65 in the HeLa cells
NF-kB↑,
DNAdam↑, only apigenin, chrysin, quercetin, galangin, luteolin and fisetin were found to clearly induce the oligonucleosomal DNA fragmentation at 50 μM after 6 h of treatment
XIAP↓, down-regulation of X-linked inhibitor of apoptosis protein (XIAP) in the U937 cells
Cyt‑c↑, (1) chrysin mediated the release of cytochrome c from mitochondria into the cytoplasm;
Casp3↑, (2) chrysin induced elevated caspase-3 activity and proteolytic cleavage of its downstream targets, such as phospholipase C-gamma-1 (PLC-gamma1), which is correlated with down-regulation of XIAP;
Akt↓, (3) chrysin decreased phosphorylated Akt levels in cells where the PI3K pathway plays a role in regulating the mechanism.
SCF↓, Chrysin has also been reported to have the ability to abolish the stem cell factor (SCF)/c-Kit signaling by inhibiting the PI3K pathway
hTERT↓, A significant decrease in human telomerase reverse transcriptase (hTERT) expression levels was also observed in leukemia cells treated with 60 ng/mL Manisa propolis, owing to its constituent of chrysin
COX2↓, Chrysin also inhibited the lipopolysaccharide-induced COX-2 expression via inhibition of nuclear factor IL-6 (NF-IL6)
*Inflam↓, anti-inflammatory [21] and anti-oxidant effects [22], and has shown cancer chemopreventive activity via induction of apoptosis in diverse range of human and rat cell types.
*antiOx↑,
*chemoP↑,
AR-V7?,
CYP19?, Chrysin has recently shown to be a potent inhibitor of aromatase [18] and of human immunodeficiency virus activation in models of latent infection

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,

481- CUR,  CHr,  Api,    Flavonoid-induced glutathione depletion: Potential implications for cancer treatment
- in-vitro, Liver, A549 - in-vitro, Pca, PC3 - in-vitro, AML, HL-60
GSH↓, depletion
mtDam↑, mitochondrial dysfunction
MMP↓,
Cyt‑c↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   p‑Akt↓,1,   ALAT↓,1,   ALP↓,1,   AMPK↑,1,   angioG↓,2,   AntiCan↑,1,   Apoptosis↑,3,   AR-V7?,1,   ATF4↑,1,   Bak↑,1,   BAX↑,3,   Bcl-2↓,1,   Bcl-xL↓,1,   BioAv↓,1,   BioAv↑,2,   Ca+2↑,2,   cardioP↑,1,   Casp↑,1,   Casp3↑,4,   Casp8↑,1,   Casp9↑,3,   ChemoSen↑,2,   CLDN1↓,1,   COX2↓,2,   COX2↑,1,   cycD1↓,2,   CYP19?,1,   Cyt‑c↑,6,   DNAdam↑,3,   DR5↑,1,   E-cadherin↑,2,   eff↑,6,   EGFR↓,1,   eIF2α↑,1,   p‑eIF2α↑,1,   EMT↓,2,   ER Stress↑,2,   ERK↓,1,   ERK↑,1,   FAK↓,1,   Fibronectin↓,1,   GlucoseCon↓,1,   Glycolysis↓,1,   GRP78/BiP↑,1,   GSH↓,1,   HDAC↓,1,   HDAC8↓,1,   Hif1a↓,1,   HK2↓,2,   HO-1↓,1,   hTERT↓,3,   IL10↓,1,   IL1β↓,2,   IL6↓,2,   Inflam↓,2,   iNOS↓,1,   lactateProd↓,1,   LDH↓,1,   LDL↓,1,   Let-7↑,1,   lipid-P↑,1,   MAPK↑,1,   Mcl-1↓,1,   MMP↓,3,   MMP↑,1,   MMP-10↓,1,   MMP2↓,1,   MMP9↓,1,   mtDam↑,1,   mTOR↓,1,   N-cadherin↓,1,   neuroP↑,1,   NF-kB↓,2,   NF-kB↑,1,   NOTCH1↑,2,   NRF2↓,2,   p38↑,2,   P53↑,1,   PARP↑,1,   PCNA↓,1,   PDK1↓,1,   PERK↑,1,   PGE2↓,1,   PI3K↑,1,   PPARα↓,1,   RadioS↑,1,   RenoP↑,1,   ROS↑,2,   SCF↓,1,   SHP1↑,1,   Slug↓,1,   Snail↓,1,   STAT3↓,1,   STAT3↑,1,   p‑STAT3↓,1,   TET1↑,2,   TLR4↓,1,   TNF-α↓,1,   TOP1↓,1,   TumCCA↑,2,   TumCP↓,2,   TumMeta↓,1,   Twist↓,2,   UPR↑,2,   VEGF↓,2,   Vim↓,1,   Wnt↓,1,   XBP-1↓,1,   XIAP↓,3,  
Total Targets: 110

Results for Effect on Normal Cells:
Akt↓,1,   antiOx↑,4,   AST↓,1,   BAX↓,1,   Bcl-2↑,1,   BioAv↓,1,   cardioP↑,2,   Casp3↓,1,   Catalase↑,1,   chemoP↑,1,   cognitive↑,1,   COX2↓,1,   Cyt‑c↓,1,   GAPDH↑,1,   GSH↑,1,   hepatoP↑,2,   HO-1↑,1,   HSP70/HSPA5↑,1,   IL2↓,1,   Inflam↓,2,   iNOS↓,1,   lipidLev↓,1,   neuroP↑,1,   NF-kB↓,1,   NOX4↓,1,   NRF2↑,1,   PARP↓,1,   PI3K↓,1,   RenoP↑,1,   ROS↓,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 32

Scientific Paper Hit Count for: Cyt‑c, cyt-c Release into Cytosol
7 Chrysin
1 Curcumin
1 Apigenin (mainly Parsley)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:77  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page