condition found tbRes List
CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CDK4, Cyclin-dependent kinase 4: Click to Expand ⟱
Source:
Type:
Cyclin-dependent kinase 4 (CDK4) is a key regulator of the cell cycle, particularly in the transition from the G1 phase to the S phase. Its expression and activity are often altered in various cancers, contributing to tumorigenesis.
CDK4 is frequently overexpressed in various cancers, and its expression levels can serve as a prognostic marker.


Scientific Papers found: Click to Expand⟱
1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓,
BAX↑,
BID↑,
BOK↑,
APAF1↑,
TNF-α↑,
FasL↑,
Fas↑,
FADD↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
Mcl-1↓,
NAIP↓,
Bcl-2↓,
CDK4↓,
CycB↓,
cycD1↓,
cycE1↓,
TRAIL↑,
p‑Akt↓,
Akt↓,
mTOR↓,
PDK1↓,
BAD↓,
GSK‐3β↑,
AMPK↑, AMPKa
p27↑,
P53↑,

2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, apoptosis, disrupting the cell cycle and inhibiting migration without generating toxicity or undesired side‑effects in normal cells
TumCMig↓,
*toxicity↝, toxic at higher doses and the recommended dose for chrysin is <3 g/day
ChemoSen↑, chrysin also inhibits multi‑drug resistant proteins and is effective in combination therapy
*BioAv↓, extremely low bioavailability in humans due to rapid quick metabolism, removal and restricted assimilation. The bioavailability of chrysin when taken orally has been estimated to be between 0.003 to 0.02%
Dose↝, safe and effective in various studies where volunteers have taken oral doses ranging from 300 to 625 mg without experiencing any documented effect
neuroP↑, Chrysin has been shown to exert neuroprotective effects via a variety of mechanisms, such as gamma-aminobutyric acid mimetic properties, monoamine oxidase inhibition, antioxidant, anti-inflammatory and anti-apoptotic activities
*P450↓, Chrysin inhibits cytochrome P450 2E1, alcohol dehydrogenase and xanthine oxidase at various dosages (20 and 40 mg/kg body weight) and protects Wistar rats against oxidative stress
*ROS↓,
*HDL↑, ncreased the levels of high-density lipoprotein cholesterol, glutathione S-transferase, superoxide dismutase and catalase
*GSTs↑,
*SOD↑,
*Catalase↑,
*MAPK↓, inactivate the MAPK/JNK pathway and suppress the NF-κB pathways, and at the same time upregulate the expression of PTEN, and activate the VEGF/AKT pathway
*NF-kB↓,
*PTEN↑,
*VEGF↑,
ROS↑, chrysin treatment in ovarian cancer led to the augmented generation of reactive oxygen species, a decrease in MMP and an increase in cytoplasmic Ca2+,
MMP↓,
Ca+2↑,
selectivity↑, It has been found that chrysin has no cytotoxic effect on normal cells, such as fibroblasts
PCNA↓, Chrysin likewise downregulates proliferating cell nuclear antigen (PCNA) expression in cervical carcinoma cells
Twist↓, Chrysin decreases the expression of TWIST 1 and NF-κB and thus suppresses epithelial-mesenchymal transition (EMT) in HeLa cells
EMT↓,
CDKN1C↑, Chrysin administration led to the upregulation of CDKN1 at the transcript and protein leve
p‑STAT3↑, Chrysin decreased the viability of 4T1 breast cancer cells by suppressing hypoxia-induced phosphorylation of STAT3
MMP2↓, chrysin-loaded PGLA/PEG nanoparticles modulated TIMPS and MMP2 and 9, and PI3K expression in a mouse 4T1 breast tumor model
MMP9↓,
eff↑, Chrysin used alone and as an adjuvant with metformin has been found to downregulate cyclin D and hTERT expression in the breast cancer cell line
cycD1↓,
hTERT↓,
CLDN1↓, CLDN1 and CLDN11 expression have been found to be higher in human lung squamous cell carcinoma. Treatment with chrysin treatment reduces both the mRNA and protein expression of these claudin genes
TumVol↓, Treatment with chrysin treatment (1.3 mg/kg body weight) significantly decreases tumor volume, resulting in a 52.6% increase in mouse survival
OS↑,
COX2↓, Chrysin restores the cellular equilibrium of cells subjected to benzopyrene by downregulating the expression of elevated proteins, such as PCNA, NF-κB and COX-2
eff↑, quercetin and chrysin together decreased the levels of pro-inflammatory molecules, such as IL-6, -1 and -10, and the levels of TNF via the NF-κB pathway.
CDK2↓, Chrysin has been shown to inhibit squamous cell carcinoma via the modulation of Rb and by decreasing the expression of CDK2 and CDK4
CDK4↓,
selectivity↑, chrysin selectively exhibits toxicity and induces the self-programed death of human uveal melanoma cells (M17 and SP6.5) without having any effect on normal cells
TumCCA↑, halting the cell cycle at the G2/M or G1/S phases
E-cadherin↑, upregulation of E-cadherin and the downregulation of cadherin
HK2↓, Chrysin decreased expression of HK-2 in mitochondria, and the interaction between HK-2 and VDAC 2 was disrupted,
HDAC↓, Chrysin, a HDAC inhibitor, caused cytotoxicity, and also inhibited migration and invasion.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   AMPK↑,1,   APAF1↑,1,   Apoptosis↑,1,   BAD↓,1,   BAX↑,1,   Bcl-2↓,1,   BID↑,1,   BOK↑,1,   Ca+2↑,1,   Casp3↑,1,   Casp7↑,1,   Casp8↑,1,   Casp9↑,1,   CDK2↓,1,   CDK4↓,2,   CDKN1C↑,1,   ChemoSen↑,1,   CLDN1↓,1,   COX2↓,1,   CycB↓,1,   cycD1↓,2,   cycE1↓,1,   Dose↝,1,   E-cadherin↑,1,   eff↑,2,   EMT↓,1,   FADD↑,1,   Fas↑,1,   FasL↑,1,   GSK‐3β↑,1,   HDAC↓,1,   HK2↓,1,   hTERT↓,1,   Mcl-1↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   mTOR↓,1,   NAIP↓,1,   neuroP↑,1,   OS↑,1,   p27↑,1,   P53↑,1,   PCNA↓,1,   PDK1↓,1,   ROS↑,1,   selectivity↑,2,   p‑STAT3↑,1,   TNF-α↑,1,   TRAIL↑,1,   TumCCA↑,1,   TumCMig↓,1,   tumCV↓,1,   TumVol↓,1,   Twist↓,1,  
Total Targets: 57

Results for Effect on Normal Cells:
BioAv↓,1,   Catalase↑,1,   GSTs↑,1,   HDL↑,1,   MAPK↓,1,   NF-kB↓,1,   P450↓,1,   PTEN↑,1,   ROS↓,1,   SOD↑,1,   toxicity↝,1,   VEGF↑,1,  
Total Targets: 12

Scientific Paper Hit Count for: CDK4, Cyclin-dependent kinase 4
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:894  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page