condition found tbRes List
CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
3258- CHr,  PBG,    Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells
- in-vitro, GC, MKN45
TET1↑, Chrysin significantly promoted the expression of TET1 in GC cells
Apoptosis↑, Chrysin could noticeably induce cell apoptosis and inhibit cell migration and invasion
TumCI↓,
TumCMig↓,

2590- CHr,    Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway
- in-vitro, GBM, T98G - in-vitro, GBM, U251 - in-vitro, GBM, U87MG
TumCP↓, Chrysin inhibited the proliferation, migration, and invasion capacity of glioblastoma cells in dose- and time-dependent manners.
TumCMig↓,
TumCI↓,
NRF2↓, chrysin deactivated the Nrf2 signaling pathway by decreasing the translocation of Nrf2 into the nucleus
HO-1↓, suppressing the expression of hemeoxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1
NADPH↓,
ERK↓, Chrysin treatment downregulates the Nrf2 pathway via inhibition of ERK signaling

2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, chrysin inhibits cancer growth through induction of apoptosis, alteration of cell cycle and inhibition of angiogenesis, invasion and metastasis without causing any toxicity and undesirable side effects to normal cells
TumCCA↑,
angioG↓,
TumCI↓,
TumMeta↑,
*toxicity↓,
selectivity↑,
chemoP↑, Induction of phase II detoxification enzymes, such as glutathione S-transferase (GST) or NAD(P)H:quinone oxidoreductase (QR) is one of the major mechanism of protection against initiation of carcinogenesis
*GSTs↑,
*NADPH↑,
*GSH↑, upregulation of antioxidant and carcinogen detoxification enzymes (glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), GST and QR)
HDAC8↓, inhibits of HDAC8 enzymatic activity
Hif1a↓, Prostate DU145: Inhibits HIF-1a expression through Akt signaling and abrogation of VEGF expression
*ROS↓, chrysin (20 and 40 mg/kg) was shown to exhibit chemopreventive activity by ameliorating oxidative stress and inflammation via NF-kB pathway
*NF-kB↓,
SCF↓, Chrysin has also been reported to have the ability to abolish the stem cell factor (SCF)/c-Kit signaling in human myeloid leukemia cells by preventing the PI3 K pathway
cl‑PARP↑, (PARP) and caspase-3 and concurrently decreasing pro-survival proteins survivin and XIAP
survivin↓,
XIAP↓,
Casp3↑, activation of caspase-3 and -9.
Casp9↑,
GSH↓, chrysin sustains a significant depletion of intracellular GSH concentrations in human NSCLC cells
ChemoSen↑, chrysin potentiates cisplatin toxicity, in part, via synergizing pro-oxidant effects of cisplatin by inducing mitochondrial dysfunction, and by depleting cellular GSH, an important antioxidant defense
Fenton↑, ability to participate in a fenton type chemical reaction
P21↑, upregulation of p21 independent of p53 status and decrease in cyclin D1, CDK2 protein levels
P53↑,
cycD1↓,
CDK2↓,
STAT3↓, chrysin inhibits angiogenesis through inhibition of STAT3 and VEGF release mediated by hypoxia through Akt signaling pathway
VEGF↓,
Akt↓,
NRF2↓, Chrysin treatment significantly reduced nrf2 expression in cells at both the mRNA and protein levels through down-regulation of PI3K-Akt and ERK pathways.

2787- CHr,    Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics
- Analysis, Var, MCF-7
TumCP↓, implicated in cell proliferation, angiogenesis, invasion, and metastasis
angioG↓,
TumCI↓,
TumMeta↓,
TP53↑, Chrysin exhibited strong binding interactions with several key hub proteins, notably TP53, AKT1, and CASP3, suggesting its capacity to inhibit tumorigenesis in breast cancer
Akt↓,
Casp3↑,
tumCV↓, dose-dependent reduction in cell viability was observed, with an IC50 value of 67.43 and 22.55 µM for 24 and 48 h
TNF-α↓, chrysin binds strongly to TNF-α, potentially inhibiting its function.
BioAv↑, Improved bioavailability of chrysin via its interaction with HSA could enhance its therapeutic efficacy, a factor that could be further explored in future pharmacokinetic studies
BioAv↑, Albumin’s ability to bind and transport Chrysin could influence the bioavailability of the flavonoid, potentially enhancing its therapeutic effects.
AKT1↓, chrysin effectively inhibits AKT1,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   AKT1↓,1,   angioG↓,2,   Apoptosis↑,2,   BioAv↑,2,   Casp3↑,2,   Casp9↑,1,   CDK2↓,1,   chemoP↑,1,   ChemoSen↑,1,   cycD1↓,1,   ERK↓,1,   Fenton↑,1,   GSH↓,1,   HDAC8↓,1,   Hif1a↓,1,   HO-1↓,1,   NADPH↓,1,   NRF2↓,2,   P21↑,1,   P53↑,1,   cl‑PARP↑,1,   SCF↓,1,   selectivity↑,1,   STAT3↓,1,   survivin↓,1,   TET1↑,1,   TNF-α↓,1,   TP53↑,1,   TumCCA↑,1,   TumCI↓,4,   TumCMig↓,2,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,1,   TumMeta↑,1,   VEGF↓,1,   XIAP↓,1,  
Total Targets: 38

Results for Effect on Normal Cells:
GSH↑,1,   GSTs↑,1,   NADPH↑,1,   NF-kB↓,1,   ROS↓,1,   toxicity↓,1,  
Total Targets: 6

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
4 Chrysin
1 Propolis -bee glue
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page