condition found tbRes List
CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
2799- CHr,    Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-κB
- in-vivo, RCC, NA
*chemoP↑, we report the chemopreventive effects of chrysin against (Fe-NTA) induced renal oxidative stress, inflammation, hyperproliferative response, and two-stage renal carcinogenesis
*ROS↓, amelioration of hyperproliferation, oxidative stress and inflammation
*Inflam↓,

2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, graphical abstract
*neuroP↓,
*ROS↓,
*cardioP↑,
*Inflam↓,
eff↑, suppression of hTERT and cyclin D1 gene expression in T47D breast cancer cell lines is due to the combined effect of metformin and chrysin
hTERT↓,
cycD1↓,
MMP9↓, nanoparticle-based chrysin in C57B16 mice bearing B16F10 melanoma tumors was markedly presented reductions in the levels of MMP-9, MMP-2, and TERT genes, whereas it enhanced TIMP-2 andTIMP-1 genes expression
MMP2↓,
TIMP1↑,
TIMP2↑,
BioAv↑, nano-encapsulation of chrysin and curcumin improved the delivery of these phytochemicals that significantly inhibited the growth of cancer cells, while it decreased the hTERT gene expression via increased solubility and bioavailability
HK2↓, chrysin treatment restrained tumor growth in HCC xenograft models and significantly reduced HK-2 expression in tumor tissue
ROS↑, showing a significant increase in intracellular reactive oxygen species (ROS), cytotoxicity, mitochondrial membrane potential (MMP) collapse, caspase-3 activation, ADP/ATP ratio, and ultimately apoptosis
MMP↓,
Casp3↑,
ADP:ATP↑,
Apoptosis↑,
ER Stress↑, Likewise, chrysin encouraged endoplasmic reticulum (ER) stress via stimulation of unfolded protein response (UPR
UPR↑,
GRP78/BiP↝, (eIF2α), PRKR-like ER kinase (PERK) and 78 kDa glucose-regulated protein (GRP78).
eff↑, silibinin and chrysin synergistically inhibited growth of T47D BCC and downregulated the hTERT and cyclin D1 level
Ca+2↑, Primarily, increased ROS and cytoplasmic Ca 2+ levels alongside induction of cell death and loss of MMP are involved in inhibition of ovarian cancer through chrysin.

2791- CHr,    Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction
- in-vitro, Ovarian, OV90
TumCP↓, chrysin inhibited ovarian cancer cell proliferation and induced cell death by increasing reactive oxygen species (ROS) production and cytoplasmic Ca2+ levels as well as inducing loss of mitochondrial membrane potential (MMP).
TumCD↑,
ROS↑,
Ca+2↑,
MMP↓,
MAPK↑, chrysin activated mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways in ES2 and OV90 cells in concentration-response experiments
PI3K↑, results indicate that the chrysin-induced activation of PI3K and MAPK signaling molecules, which induced apoptosis,
p‑Akt↑, Chrysin stimulated the phosphorylation of AKT and P70S6K proteins in both ES2 and OV90 cells compared to the untreated control cell
PCNA↓, treatment with chrysin attenuated the abundant expression of PCNA protein in both ES2 and OV90 cells
p‑p70S6↑,
p‑ERK↑, chrysin activated the phospho-ERK1/2, p38, and JNK proteins as members of the MAPK pathway in the ovarian cancer cells
p38↑,
JNK↑,
DNAdam↑, stimulates apoptotic events in prostate cancer cells by the accumulation of DNA fragmentation, an increase in the population of cells in the sub-G1 phase of the cell cycle
TumCCA↑,
chemoP↑, combination therapy with chrysin enhances the therapeutic effect of the chemotherapeutic agent, docetaxel, in lung cancer by reducing its adverse effects

2792- CHr,    Chrysin induces death of prostate cancer cells by inducing ROS and ER stress
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNAdam↑, chrysin induced apoptosis of cells evidenced by DNA fragmentation and increasing the population of both DU145 and PC-3 cells in the sub-G1 phase of the cell cycle
TumCCA↑,
MMP↓, chrysin induced loss of mitochondria membrane potential (MMP), while increasing production of reactive oxygen species (ROS) and lipid peroxidation in a dose-dependent manner
ROS↑,
lipid-P↑,
ER Stress↑, Also, it induced endoplasmic reticulum (ER) stress through activation of unfolded protein response (UPR) proteins including PRKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and 78 kDa glucose-regulated protein (GRP78)
UPR↑,
PERK↑,
eIF2α↑,
GRP78/BiP↑,
PI3K↓, chrysin-mediated intracellular signaling pathways suppressed phosphoinositide 3-kinase (PI3K) and the abundance of AKT, P70S6K, S6, and P90RSK proteins, but stimulated mitogen-activated protein kinases (MAPK) and activation of ERK1/2 and P38 proteins
Akt↓,
p70S6↓,
MAPK↑,

2794- CHr,    An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches
- Review, Park, NA - Review, Stroke, NA
*neuroP↑, chrysin has protective effects against neurological conditions by modulating oxidative stress, inflammation, and apoptosis in animal models.
*ROS↓,
*Inflam↓,
*Apoptosis↓,
*IL1β↓, attenuated IL-1β and TNF-α, COX-2, iNOS, and NF-kB expression, activated JNK
*TNF-α↓,
*COX2↓,
*iNOS↓,
*NF-kB↓,
*JNK↓,
*HDAC↓, alleviated histone deacetylase (HDCA) activity, GSK-3β levels, IFNγ, IL-17,
*GSK‐3β↓,
*IFN-γ↓,
*IL17↓,
*GSH↑, increased GSH levels
*NRF2↑, Park's: Increased Nrf2, modulated HO-1, SOD, CAT, decreased MDA, inhibited NF-κB and iNOS
*HO-1↑, upregulated expression of hallmark antioxidant enzymes, including HO-1, SOD, and CAT; and decreased levels of MDA
*SOD↑,
*MDA↓,
*NO↓, Attenuated NO, increased GPx
*GPx↑,
*TBARS↓, decreased levels of TBARS, AChE, restored activities of GR, GSH, SOD, CAT and Vitamin C
*AChE↓,
*GR↑,
*Catalase↑,
*VitC↑,
*memory↑, attenuated memory impairment
*lipid-P↓, attenuated lipid peroxidation
*ROS↓, attenuated ROS

2796- CHr,    Chemopreventive effect of chrysin, a dietary flavone against benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice
- in-vivo, Lung, NA
PCNA↓, PCNA, COX-2 and NF-κB, where chrysin supplementation downregulated the expression of these proteins and maintained cellular homeostasis.
COX2↓,
NF-kB↓,
chemoP↑, chemopreventive potential of chrysin against B(a)P induced lung cancer in Swiss albino mice
*SOD↑, SOD, CAT, GR and GPx. Chrysin treatment significantly restored all above enzymatic anti-oxidants.
*Catalase↓,
*GR↓,
*GPx↓,
*lipid-P↓, chrysin inhibits LPO thereby preventing the formation of lipid peroxides which are engaged in carcinogenesis
*COX2↓, Chrysin supplementation significantly downregulated the protein expressions of COX-2 and NF-kB,
*NF-kB↓,
*ROS↓, chrysin is capable of protecting the lungs against oxidative damage.

2801- CHr,    AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells
- in-vitro, Lung, A549
AMPK↑, demonstrated a significant AMPK activation after chrysin treatment in A549 cells
Akt↓, inhibited Akt/mammalian target of rapamycin (mTOR) activation
ChemoSen↑, Chrysin increases doxorubicin-induced AMPK activation to promote A549 cell death and growth inhibition
ROS↑, Recently, studies have confirmed that chrysin is a potent inducer of ROS and in A549 and other cancer cells

2804- CHr,  Rad,    Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway
- in-vitro, CRC, HT29
RadioS↑, enhancement of the anticancer effects of chrysin upon exposure to gamma irradiation
ROS↑, excessive production of included reactive oxygen species, the dissipation of the mitochondrial membrane potential, regulation of the B cell lymphoma-2 family, activation of caspase-9, 3, and cleavage of poly (adenosine diphosphate-ribose) polymerase.
MMP↓,
Casp3↑,
Casp9↑,
cl‑PARP↑,

2806- CHr,  Se,    Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy
- in-vitro, Var, NA
eff↑, SeChry elicited a noteworthy cytotoxic activity with mean IC50 values 18- and 3-fold lower than those observed for chrysin and cisplatin, respectively
selectivity↑, differential behavior toward malignant and nonmalignant cells was observed for SeChry and SePQue, exhibiting higher selectivity indexes
Dose↝, 5 min. of microwave irradiation at 175 W (150 ºC) of an acetonitrile WR and flavonoid solution on a sealed pyrex microwave vial,
TrxR↓, Both compounds were able to decrease cellular TrxR
GSH↓, The results clearly showed that after treatment with both seleno-flavonoids total glutathione concentration (GSH + GSSG) decreased
MMP↓, MMP reduced by up to four times compared to control cells
ROS↑, Both seleno-derivatives were able to increase the oxidant basal production
H2O2↑, ore dramatic decrease of the MMP and a higher ability to increase the hydrogen peroxide basal production,

1144- CHr,    8-bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNK
- in-vitro, HCC, HepG2 - in-vitro, HCC, Bel-7402 - in-vitro, Nor, HL7702
Casp3↑,
*ROS∅, BrMC did not affect ROS generation in L-02 cells
ROS↑,
JNK↑,
*toxicity↓, BrMC had little effect on human embryo liver L-02 cells

1249- CHr,    Chrysin as an Anti-Cancer Agent Exerts Selective Toxicity by Directly Inhibiting Mitochondrial Complex II and V in CLL B-lymphocytes
- in-vitro, CLL, NA
ROS↑,
MMP↓,
ADP:ATP↑,
Casp3↑,
Apoptosis↑,

2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, It can block Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling in different animals against various cancers
Akt↓,
mTOR↓,
MMP9↑, Chrysin strongly suppresses Matrix metalloproteinase-9 (MMP-9), Urokinase plasminogen activator (uPA) and Vascular endothelial growth factor (VEGF), i.e. factors that can cause cancer
uPA↓,
VEGF↓,
AR↓, Chrysin has the ability to suppress the androgen receptor (AR), a protein necessary for prostate cancer development and metastasis
Casp↑, starts the caspase cascade and blocks protein synthesis to kill lung cancer cells
TumMeta↓, Chrysin significantly decreased lung cancer metastasis i
TumCCA↑, Chrysin induces apoptosis and stops colon cancer cells in the G2/M cell cycle phase
angioG↓, Chrysin prevents tumor growth and cancer spread by blocking blood vessel expansion
BioAv↓, Chrysin’s solubility, accessibility and bioavailability may limit its medical use.
*hepatoP↑, As chrysin reduced oxidative stress and lipid peroxidation in rat liver cells exposed to a toxic chemical agent.
*neuroP↑, Protecting the brain against oxidative stress (GPx) may be aided by increasing levels of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*ROS↓, A decrease in oxidative stress and an increase in antioxidant capacity may result from chrysin’s anti-inflammatory properties
*Inflam↓,
*Catalase↑, Supplementation with chrysin increased the activity of antioxidant enzymes like SOD and catalase and reduced the levels of oxidative stress markers like malondialdehyde (MDA) in the colon tissue of the rats.
*MDA↓, Antioxidant enzyme activity (SOD, CAT) and oxidative stress marker (MDA) levels were both enhanced by chrysin supplementation in mouse liver tissue
ROS↓, reduction of reactive oxygen species (ROS) and oxidative stress markers in the cancer cells further indicated the antioxidant activity of chrysin
BBB↑, After crossing the blood-brain barrier, it has been shown to accumulate there
Half-Life↓, The half-life of chrysin in rats is predicted to be close to 2 hours.
BioAv↑, Taking chrysin with food may increase the effectiveness of the supplement: increased by a factor of 1.8 when taken with a high-fat meal
ROS↑, In contrast to 5-FU/oxaliplatin, chrysin increases the production of reactive oxygen species (ROS), which in turn causes autophagy by stopping Akt and mTOR from doing their jobs
eff↑, mixture of chrysin and cisplatin caused the SCC-25 and CAL-27 cell lines to make more oxygen free radicals. After treatment with chrysin, cisplatin, or both, the amount of reactive oxygen species (ROS) was found to have gone up.
ROS↑, When reactive oxygen species (ROS) and calcium levels in the cytoplasm rise because of chrysin, OC cells die.
ROS↑, chrysin is the cause of death in both types of prostate cancer cells. It does this by depolarizing mitochondrial membrane potential (MMP), making reactive oxygen species (ROS), and starting lipid peroxidation.
lipid-P↑,
ER Stress↑, when chrysin is present in DU145 and PC-3 cells, the expression of a group of proteins that control ER stress goes up
NOTCH1↑, Chrysin increased the production of Notch 1 and hairy/enhancer of split 1 at the protein and mRNA levels, which stopped cells from dividing
NRF2↓, Not only did chrysin stop Nrf2 and the genes it controls from working, but it also caused MCF-7 breast cancer cells to die via apoptosis.
p‑FAK↓, After 48 hours of treatment with chrysin at amounts between 5 and 15 millimoles, p-FAK and RhoA were greatly lowered
Rho↓,
PCNA↓, Lung histology and immunoblotting studies of PCNA, COX-2, and NF-B showed that adding chrysin stopped the production of these proteins and maintained the balance of cells
COX2↓,
NF-kB↓,
PDK1↓, After the chrysin was injected, the genes PDK1, PDK3, and GLUT1 that are involved in glycolysis had less expression
PDK3↑,
GLUT1↓,
Glycolysis↓, chrysin stops glycolysis
mt-ATP↓, chrysin inhibits complex II and ATPases in the mitochondria of cancer cells
Ki-67↓, the amounts of Ki-67, which is a sign of growth, and c-Myc in the tumor tissues went down
cMyc↓,
ROCK1↓, (ROCK1), transgelin 2 (TAGLN2), and FCH and Mu domain containing endocytic adaptor 2 (FCHO2) were much lower.
TOP1↓, DNA topoisomerases and histone deacetylase were inhibited, along with the synthesis of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and (IL-1 beta), while the activity of protective signaling pathways was increased
TNF-α↓,
IL1β↓,
CycB↓, Chrysin suppressed cyclin B1 and CDK2 production in order to stop cancerous growth.
CDK2↓,
EMT↓, chrysin treatment can also stop EMT
STAT3↓, chrysin block the STAT3 and NF-B pathways, but it also greatly reduced PD-L1 production both in vivo and in vitro.
PD-L1↓,
IL2↑, chrysin increases both the rate of T cell growth and the amount of IL-2

2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, antioxidant, anti-inflammatory, hepatoprotective, neuroprotective
*Inflam↓, inhibitory effect of chrysin on inflammation and oxidative stress is also important in Parkinson’s disease
*hepatoP↑,
*neuroP↑,
*BioAv↓, Accumulating data demonstrates that poor absorption, rapid metabolism, and systemic elimination are responsible for poor bioavailability of chrysin in humans that, subsequently, restrict its therapeutic effects
*cardioP↑, cardioprotective [69], lipid-lowering effect [70]
*lipidLev↓,
*RenoP↑, Renoprotective
*TNF-α↓, chrysin reduces levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2).
*IL2↓,
*PI3K↓, induction of the PI3K/Akt signaling pathway by chrysin contributes to a reduction in oxidative stress and inflammation during cerebral I/R injury
*Akt↓,
*ROS↓,
*cognitive↑, Chrysin (25, 50, and 100 mg/kg) improves cognitive capacity, inflammation, and apoptosis to ameliorate traumatic brain injury
eff↑, chrysin and silibinin is beneficial in suppressing breast cancer malignancy via decreasing cancer proliferation
cycD1↓, chrysin and silibinin induced cell cycle arrest via down-regulation of cyclin D1 and hTERT
hTERT↓,
VEGF↓, Administration of chrysin is associated with the disruption of hypoxia-induced VEGF gene expression
p‑STAT3↓, chrysin is capable of reducing STAT3 phosphorylation in hypoxic conditions without affecting the HIF-1α protein level.
TumMeta↓, chrysin is a potent agent in suppressing metastasis and proliferation of breast cancer cells during hypoxic conditions
TumCP↓,
eff↑, combination therapy of breast cancer cells using chrysin and metformin exerts a synergistic effect and is more efficient compared to chrysin alone
eff↑, combination of quercetin and chrysin reduced levels of pro-inflammatory factors, such as IL-1β, Il-6, TNF-α, and IL-10, via NF-κB down-regulation.
IL1β↓,
IL6↓,
NF-kB↓,
ROS↑, after chrysin administration, an increase occurs in levels of ROS that, subsequently, impairs the integrity of the mitochondrial membrane, leading to cytochrome C release and apoptosis induction
MMP↓,
Cyt‑c↑,
Apoptosis↑,
ER Stress↑, in addition to mitochondria, ER can also participate in apoptosis
Ca+2↑, Upon chrysin administration, an increase occurs in levels of ROS and cytoplasmic Ca2+ that mediate apoptosis induction in OC cells
TET1↑, In MKN45 cells, chrysin promotes the expression of TET1
Let-7↑, Chrysin is capable of promoting the expression of miR-9 and Let-7a as onco-suppressor factors in cancer to inhibit the proliferation of GC cells
Twist↓, Down-regulation of NF-κB, and subsequent decrease in Twist/EMT are mediated by chrysin administration, negatively affecting cervical cancer metastasis
EMT↓,
TumCCA↑, nduction of cell cycle arrest and apoptosis via up-regulation of caspase-3, caspase-9, and Bax are mediated by chrysin
Casp3↑,
Casp9↑,
BAX↑,
HK2↓, Chrysin administration (15, 30, and 60 mM) reduces the expression of HK-2 in hepatocellular carcinoma (HCC) cells to impair glucose uptake and lactate production.
GlucoseCon↓,
lactateProd↓,
Glycolysis↓, In addition to glycolysis metabolism impairment, the inhibitory effect of chrysin on HK-2 leads to apoptosis
SHP1↑, upstream modulator of STAT3 known as SHP-1 is up-regulated by chrysin
N-cadherin↓, Furthermore, N-cadherin and E-cadherin are respectively down-regulated and up-regulated upon chrysin administration in inhibiting melanoma invasion
E-cadherin↑,
UPR↑, chrysin substantially diminishes survival by ER stress induction via stimulating UPR, PERK, ATF4, and elF2α
PERK↑,
ATF4↑,
eIF2α↑,
RadioS↑, Irradiation combined with chrysin exerts a synergistic effect
NOTCH1↑, Irradiation combined with chrysin exerts a synergistic effect
NRF2↓, in reducing Nrf2 expression, chrysin down-regulates the expression of ERK and PI3K/Akt pathways—leading to an increase in the efficiency of doxorubicin in chemotherapy
BioAv↑, chrysin at the tumor site by polymeric nanoparticles leads to enhanced anti-tumor activity, due to enhanced cellular uptake
eff↑, Chrysin- and curcumin-loaded nanoparticles significantly promote the expression of TIMP-1 and TIMP-2 to exert a reduction in melanoma invasion

2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, apoptosis, disrupting the cell cycle and inhibiting migration without generating toxicity or undesired side‑effects in normal cells
TumCMig↓,
*toxicity↝, toxic at higher doses and the recommended dose for chrysin is <3 g/day
ChemoSen↑, chrysin also inhibits multi‑drug resistant proteins and is effective in combination therapy
*BioAv↓, extremely low bioavailability in humans due to rapid quick metabolism, removal and restricted assimilation. The bioavailability of chrysin when taken orally has been estimated to be between 0.003 to 0.02%
Dose↝, safe and effective in various studies where volunteers have taken oral doses ranging from 300 to 625 mg without experiencing any documented effect
neuroP↑, Chrysin has been shown to exert neuroprotective effects via a variety of mechanisms, such as gamma-aminobutyric acid mimetic properties, monoamine oxidase inhibition, antioxidant, anti-inflammatory and anti-apoptotic activities
*P450↓, Chrysin inhibits cytochrome P450 2E1, alcohol dehydrogenase and xanthine oxidase at various dosages (20 and 40 mg/kg body weight) and protects Wistar rats against oxidative stress
*ROS↓,
*HDL↑, ncreased the levels of high-density lipoprotein cholesterol, glutathione S-transferase, superoxide dismutase and catalase
*GSTs↑,
*SOD↑,
*Catalase↑,
*MAPK↓, inactivate the MAPK/JNK pathway and suppress the NF-κB pathways, and at the same time upregulate the expression of PTEN, and activate the VEGF/AKT pathway
*NF-kB↓,
*PTEN↑,
*VEGF↑,
ROS↑, chrysin treatment in ovarian cancer led to the augmented generation of reactive oxygen species, a decrease in MMP and an increase in cytoplasmic Ca2+,
MMP↓,
Ca+2↑,
selectivity↑, It has been found that chrysin has no cytotoxic effect on normal cells, such as fibroblasts
PCNA↓, Chrysin likewise downregulates proliferating cell nuclear antigen (PCNA) expression in cervical carcinoma cells
Twist↓, Chrysin decreases the expression of TWIST 1 and NF-κB and thus suppresses epithelial-mesenchymal transition (EMT) in HeLa cells
EMT↓,
CDKN1C↑, Chrysin administration led to the upregulation of CDKN1 at the transcript and protein leve
p‑STAT3↑, Chrysin decreased the viability of 4T1 breast cancer cells by suppressing hypoxia-induced phosphorylation of STAT3
MMP2↓, chrysin-loaded PGLA/PEG nanoparticles modulated TIMPS and MMP2 and 9, and PI3K expression in a mouse 4T1 breast tumor model
MMP9↓,
eff↑, Chrysin used alone and as an adjuvant with metformin has been found to downregulate cyclin D and hTERT expression in the breast cancer cell line
cycD1↓,
hTERT↓,
CLDN1↓, CLDN1 and CLDN11 expression have been found to be higher in human lung squamous cell carcinoma. Treatment with chrysin treatment reduces both the mRNA and protein expression of these claudin genes
TumVol↓, Treatment with chrysin treatment (1.3 mg/kg body weight) significantly decreases tumor volume, resulting in a 52.6% increase in mouse survival
OS↑,
COX2↓, Chrysin restores the cellular equilibrium of cells subjected to benzopyrene by downregulating the expression of elevated proteins, such as PCNA, NF-κB and COX-2
eff↑, quercetin and chrysin together decreased the levels of pro-inflammatory molecules, such as IL-6, -1 and -10, and the levels of TNF via the NF-κB pathway.
CDK2↓, Chrysin has been shown to inhibit squamous cell carcinoma via the modulation of Rb and by decreasing the expression of CDK2 and CDK4
CDK4↓,
selectivity↑, chrysin selectively exhibits toxicity and induces the self-programed death of human uveal melanoma cells (M17 and SP6.5) without having any effect on normal cells
TumCCA↑, halting the cell cycle at the G2/M or G1/S phases
E-cadherin↑, upregulation of E-cadherin and the downregulation of cadherin
HK2↓, Chrysin decreased expression of HK-2 in mitochondria, and the interaction between HK-2 and VDAC 2 was disrupted,
HDAC↓, Chrysin, a HDAC inhibitor, caused cytotoxicity, and also inhibited migration and invasion.

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,

2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, chrysin inhibits cancer growth through induction of apoptosis, alteration of cell cycle and inhibition of angiogenesis, invasion and metastasis without causing any toxicity and undesirable side effects to normal cells
TumCCA↑,
angioG↓,
TumCI↓,
TumMeta↑,
*toxicity↓,
selectivity↑,
chemoP↑, Induction of phase II detoxification enzymes, such as glutathione S-transferase (GST) or NAD(P)H:quinone oxidoreductase (QR) is one of the major mechanism of protection against initiation of carcinogenesis
*GSTs↑,
*NADPH↑,
*GSH↑, upregulation of antioxidant and carcinogen detoxification enzymes (glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), GST and QR)
HDAC8↓, inhibits of HDAC8 enzymatic activity
Hif1a↓, Prostate DU145: Inhibits HIF-1a expression through Akt signaling and abrogation of VEGF expression
*ROS↓, chrysin (20 and 40 mg/kg) was shown to exhibit chemopreventive activity by ameliorating oxidative stress and inflammation via NF-kB pathway
*NF-kB↓,
SCF↓, Chrysin has also been reported to have the ability to abolish the stem cell factor (SCF)/c-Kit signaling in human myeloid leukemia cells by preventing the PI3 K pathway
cl‑PARP↑, (PARP) and caspase-3 and concurrently decreasing pro-survival proteins survivin and XIAP
survivin↓,
XIAP↓,
Casp3↑, activation of caspase-3 and -9.
Casp9↑,
GSH↓, chrysin sustains a significant depletion of intracellular GSH concentrations in human NSCLC cells
ChemoSen↑, chrysin potentiates cisplatin toxicity, in part, via synergizing pro-oxidant effects of cisplatin by inducing mitochondrial dysfunction, and by depleting cellular GSH, an important antioxidant defense
Fenton↑, ability to participate in a fenton type chemical reaction
P21↑, upregulation of p21 independent of p53 status and decrease in cyclin D1, CDK2 protein levels
P53↑,
cycD1↓,
CDK2↓,
STAT3↓, chrysin inhibits angiogenesis through inhibition of STAT3 and VEGF release mediated by hypoxia through Akt signaling pathway
VEGF↓,
Akt↓,
NRF2↓, Chrysin treatment significantly reduced nrf2 expression in cells at both the mRNA and protein levels through down-regulation of PI3K-Akt and ERK pathways.

2788- CHr,    Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action
- Review, Var, NA
*neuroP↑, Chrysin mitigates neurotoxicity, neuroinflammation, and oxidative stress.
*Inflam↓,
*ROS↓,
NF-kB↓, Chrysin treatment maintains the antioxidant armory and suppresses the activation of redox-active transcription factor NF-kB
*PCNA↓, Chrysin supplementation downregulated the expression of PCNA, COX-2, and NF-kB
*COX2↓,
ChemoSen↑, Chrysin is effective in attenuating cisplatin-induced expression of both COX-2 and iNOS
Hif1a↓, DU145: Chrysin suppressed the expression of HIF-1a of tumor cells in vitro and inhibited tumor cell-induced angiogenesis in vivo
angioG↓,
*chemoP↑, Chrysin as an effective chemopreventive agent having the capability to obstruct DEN initiated and Fe-NTA promoted renal cancer in the rat model
PDGF↓, Chrysin functionally suppresses PDGF-induced proliferation and migration in VSMCs
*memory↑, Chrysin is effective in attenuating memory impairment, oxidative stress, acting as an antiaging agent
*RenoP↑, protected the kidney from damage
*PPARα↑, Chrysin significantly inhibits AGE-RAGE mediated oxidative stress and inflammation through PPAR-g activation
*lipidLev↓, Chrysin was able to decrease plasma lipids concentration because of its antioxidant properties
*hepatoP↑, Chrysin shows promising hepatoprotective and antihyperlipidemic effects, which are evidenced by the decreased levels of triglycerides, free fatty acids, total cholesterol, phospholipids, low-density lipoprotein-C, and very low-density lipoprotein
*cardioP⇅, Chrysin significantly ameliorated myocardial damage
*BioAv↓, despite its therapeutic potential, the bioavailability of chrysin and probably other flavonoids in humans is extremely low, mainly due to poor absorption, rapid metabolism, and rapid systemic elimination.

1084- LT,  CHr,    Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells
- in-vitro, Nor, RAW264.7
*COX2↓, 25, 50, or 100 micromol/L concentrations of luteolin inhibited (lipopolysaccharide (LPS)-induced) Cox-2 protein expression
*COX2∅, Chrysin pretreatment did not reduce (LPS-induced) Cox-2 protein expression at any level tested.
*PGE2↓, both luteolin and chrysin completely suppressed (LPS-induced) PGE2 formation
*ROS↓, only Luteolin suppressed superoxide formation (induced by xanthine)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 18

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↑,2,   Akt↓,5,   p‑Akt↑,1,   ALAT↓,1,   ALP↓,1,   AMPK↑,1,   angioG↓,4,   Apoptosis↑,5,   AR↓,1,   ATF4↑,1,   mt-ATP↓,1,   BAX↑,1,   BBB↑,1,   Bcl-xL↓,1,   BioAv↓,1,   BioAv↑,4,   Ca+2↑,5,   cardioP↑,1,   Casp↑,1,   Casp3↑,7,   Casp9↑,3,   CDK2↓,3,   CDK4↓,1,   CDKN1C↑,1,   chemoP↑,3,   ChemoSen↑,4,   CLDN1↓,2,   cMyc↓,1,   COX2↓,3,   COX2↑,1,   CycB↓,1,   cycD1↓,5,   Cyt‑c↑,2,   DNAdam↑,3,   Dose↝,2,   E-cadherin↑,3,   eff↑,12,   EGFR↓,1,   eIF2α↑,2,   p‑eIF2α↑,1,   EMT↓,4,   ER Stress↑,5,   ERK↓,1,   p‑ERK↑,1,   p‑FAK↓,1,   Fenton↑,1,   Fibronectin↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,2,   GRP78/BiP↑,2,   GRP78/BiP↝,1,   GSH↓,2,   H2O2↑,1,   Half-Life↓,1,   HDAC↓,2,   HDAC8↓,1,   Hif1a↓,3,   HK2↓,4,   HO-1↓,1,   hTERT↓,4,   IL10↓,1,   IL1β↓,3,   IL2↑,1,   IL6↓,2,   iNOS↓,1,   JNK↑,2,   Ki-67↓,1,   lactateProd↓,1,   LDH↓,1,   LDL↓,1,   Let-7↑,1,   lipid-P↑,3,   MAPK↑,2,   Mcl-1↓,1,   MMP↓,8,   MMP↑,1,   MMP-10↓,1,   MMP2↓,3,   MMP9↓,3,   MMP9↑,1,   mTOR↓,2,   N-cadherin↓,1,   neuroP↑,2,   NF-kB↓,4,   NOTCH1↑,3,   NRF2↓,4,   OS↑,1,   P21↑,1,   p38↑,1,   P53↑,1,   p70S6↓,1,   p‑p70S6↑,1,   PARP↑,1,   cl‑PARP↑,2,   PCNA↓,4,   PD-L1↓,1,   PDGF↓,1,   PDK1↓,2,   PDK3↑,1,   PERK↑,2,   PGE2↓,1,   PI3K↓,2,   PI3K↑,1,   PPARα↓,1,   RadioS↑,2,   RenoP↑,1,   Rho↓,1,   ROCK1↓,1,   ROS↓,1,   ROS↑,14,   SCF↓,1,   selectivity↑,4,   SHP1↑,1,   Slug↓,1,   Snail↓,1,   STAT3↓,3,   p‑STAT3↓,1,   p‑STAT3↑,1,   survivin↓,1,   TET1↑,2,   TIMP1↑,1,   TIMP2↑,1,   TLR4↓,1,   TNF-α↓,2,   TOP1↓,2,   TrxR↓,1,   TumCCA↑,6,   TumCD↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,2,   TumMeta↓,2,   TumMeta↑,1,   TumVol↓,1,   Twist↓,3,   uPA↓,1,   UPR↑,4,   VEGF↓,4,   Vim↓,1,   XBP-1↓,1,   XIAP↓,2,  
Total Targets: 142

Results for Effect on Normal Cells:
AChE↓,1,   Akt↓,1,   antiOx↑,1,   Apoptosis↓,1,   AST↓,1,   BioAv↓,3,   cardioP↑,2,   cardioP⇅,1,   Catalase↓,1,   Catalase↑,3,   chemoP↑,2,   cognitive↑,1,   COX2↓,5,   COX2∅,1,   GPx↓,1,   GPx↑,2,   GR↓,1,   GR↑,1,   GSH↑,2,   GSK‐3β↓,1,   GSTs↑,2,   HDAC↓,1,   HDL↑,1,   hepatoP↑,4,   HO-1↑,1,   IFN-γ↓,1,   IL17↓,1,   IL1β↓,1,   IL2↓,1,   Inflam↓,6,   iNOS↓,2,   JNK↓,1,   lipid-P↓,2,   lipidLev↓,2,   MAPK↓,1,   MDA↓,2,   memory↑,2,   NADPH↑,1,   neuroP↓,1,   neuroP↑,4,   NF-kB↓,5,   NO↓,1,   NRF2↑,1,   P450↓,1,   PCNA↓,1,   PGE2↓,1,   PI3K↓,1,   PPARα↑,1,   PTEN↑,1,   RenoP↑,2,   ROS↓,11,   ROS∅,1,   SOD↑,4,   TBARS↓,1,   TNF-α↓,2,   toxicity↓,2,   toxicity↝,1,   VEGF↑,1,   VitC↑,1,  
Total Targets: 59

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
18 Chrysin
1 Radiotherapy/Radiation
1 Selenium
1 Propolis -bee glue
1 Luteolin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page