condition found
Features: |
Chrysin is found in passion flower and honey. It is a flavonoid. -To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary. -Note half-life 2 hrs, BioAv very poor Pathways: Graphical Pathways - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped. -Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation. -HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer. -HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells. -HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis. -HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type. -While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes. -HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases. -HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells. |
2794- | CHr,  |   | An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches |
- | Review, | Park, | NA | - | Review, | Stroke, | NA |
2798- | CHr,  |   | Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
2784- | CHr,  |   | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
- | Review, | Var, | NA |
2785- | CHr,  |   | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:61 Target#:140 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid