condition found tbRes List
CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HDAC, Histone deacetylases: Click to Expand ⟱
Source:
Type:
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped.
-Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation.
-HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer.
-HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells.
-HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis.
-HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type.
-While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes.
-HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases.
-HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells.


Scientific Papers found: Click to Expand⟱
2794- CHr,    An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches
- Review, Park, NA - Review, Stroke, NA
*neuroP↑, chrysin has protective effects against neurological conditions by modulating oxidative stress, inflammation, and apoptosis in animal models.
*ROS↓,
*Inflam↓,
*Apoptosis↓,
*IL1β↓, attenuated IL-1β and TNF-α, COX-2, iNOS, and NF-kB expression, activated JNK
*TNF-α↓,
*COX2↓,
*iNOS↓,
*NF-kB↓,
*JNK↓,
*HDAC↓, alleviated histone deacetylase (HDCA) activity, GSK-3β levels, IFNγ, IL-17,
*GSK‐3β↓,
*IFN-γ↓,
*IL17↓,
*GSH↑, increased GSH levels
*NRF2↑, Park's: Increased Nrf2, modulated HO-1, SOD, CAT, decreased MDA, inhibited NF-κB and iNOS
*HO-1↑, upregulated expression of hallmark antioxidant enzymes, including HO-1, SOD, and CAT; and decreased levels of MDA
*SOD↑,
*MDA↓,
*NO↓, Attenuated NO, increased GPx
*GPx↑,
*TBARS↓, decreased levels of TBARS, AChE, restored activities of GR, GSH, SOD, CAT and Vitamin C
*AChE↓,
*GR↑,
*Catalase↑,
*VitC↑,
*memory↑, attenuated memory impairment
*lipid-P↓, attenuated lipid peroxidation
*ROS↓, attenuated ROS

2798- CHr,    Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
HDAC↓, chrysin is a histone deacetylase inhibitor (HDACi) and that it markedly inhibited HDAC8 enzymatic activity
HDAC8↓,
TumCG↓, chrysin significantly suppressed cell growth and induced differentiation in MDA-MB-231 cells
Diff↑,

2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, apoptosis, disrupting the cell cycle and inhibiting migration without generating toxicity or undesired side‑effects in normal cells
TumCMig↓,
*toxicity↝, toxic at higher doses and the recommended dose for chrysin is <3 g/day
ChemoSen↑, chrysin also inhibits multi‑drug resistant proteins and is effective in combination therapy
*BioAv↓, extremely low bioavailability in humans due to rapid quick metabolism, removal and restricted assimilation. The bioavailability of chrysin when taken orally has been estimated to be between 0.003 to 0.02%
Dose↝, safe and effective in various studies where volunteers have taken oral doses ranging from 300 to 625 mg without experiencing any documented effect
neuroP↑, Chrysin has been shown to exert neuroprotective effects via a variety of mechanisms, such as gamma-aminobutyric acid mimetic properties, monoamine oxidase inhibition, antioxidant, anti-inflammatory and anti-apoptotic activities
*P450↓, Chrysin inhibits cytochrome P450 2E1, alcohol dehydrogenase and xanthine oxidase at various dosages (20 and 40 mg/kg body weight) and protects Wistar rats against oxidative stress
*ROS↓,
*HDL↑, ncreased the levels of high-density lipoprotein cholesterol, glutathione S-transferase, superoxide dismutase and catalase
*GSTs↑,
*SOD↑,
*Catalase↑,
*MAPK↓, inactivate the MAPK/JNK pathway and suppress the NF-κB pathways, and at the same time upregulate the expression of PTEN, and activate the VEGF/AKT pathway
*NF-kB↓,
*PTEN↑,
*VEGF↑,
ROS↑, chrysin treatment in ovarian cancer led to the augmented generation of reactive oxygen species, a decrease in MMP and an increase in cytoplasmic Ca2+,
MMP↓,
Ca+2↑,
selectivity↑, It has been found that chrysin has no cytotoxic effect on normal cells, such as fibroblasts
PCNA↓, Chrysin likewise downregulates proliferating cell nuclear antigen (PCNA) expression in cervical carcinoma cells
Twist↓, Chrysin decreases the expression of TWIST 1 and NF-κB and thus suppresses epithelial-mesenchymal transition (EMT) in HeLa cells
EMT↓,
CDKN1C↑, Chrysin administration led to the upregulation of CDKN1 at the transcript and protein leve
p‑STAT3↑, Chrysin decreased the viability of 4T1 breast cancer cells by suppressing hypoxia-induced phosphorylation of STAT3
MMP2↓, chrysin-loaded PGLA/PEG nanoparticles modulated TIMPS and MMP2 and 9, and PI3K expression in a mouse 4T1 breast tumor model
MMP9↓,
eff↑, Chrysin used alone and as an adjuvant with metformin has been found to downregulate cyclin D and hTERT expression in the breast cancer cell line
cycD1↓,
hTERT↓,
CLDN1↓, CLDN1 and CLDN11 expression have been found to be higher in human lung squamous cell carcinoma. Treatment with chrysin treatment reduces both the mRNA and protein expression of these claudin genes
TumVol↓, Treatment with chrysin treatment (1.3 mg/kg body weight) significantly decreases tumor volume, resulting in a 52.6% increase in mouse survival
OS↑,
COX2↓, Chrysin restores the cellular equilibrium of cells subjected to benzopyrene by downregulating the expression of elevated proteins, such as PCNA, NF-κB and COX-2
eff↑, quercetin and chrysin together decreased the levels of pro-inflammatory molecules, such as IL-6, -1 and -10, and the levels of TNF via the NF-κB pathway.
CDK2↓, Chrysin has been shown to inhibit squamous cell carcinoma via the modulation of Rb and by decreasing the expression of CDK2 and CDK4
CDK4↓,
selectivity↑, chrysin selectively exhibits toxicity and induces the self-programed death of human uveal melanoma cells (M17 and SP6.5) without having any effect on normal cells
TumCCA↑, halting the cell cycle at the G2/M or G1/S phases
E-cadherin↑, upregulation of E-cadherin and the downregulation of cadherin
HK2↓, Chrysin decreased expression of HK-2 in mitochondria, and the interaction between HK-2 and VDAC 2 was disrupted,
HDAC↓, Chrysin, a HDAC inhibitor, caused cytotoxicity, and also inhibited migration and invasion.

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   ALAT↓,1,   ALP↓,1,   angioG↓,1,   Apoptosis↑,1,   Bcl-xL↓,1,   BioAv↑,1,   Ca+2↑,2,   cardioP↑,1,   Casp3↑,1,   CDK2↓,1,   CDK4↓,1,   CDKN1C↑,1,   ChemoSen↑,1,   CLDN1↓,2,   COX2↓,1,   COX2↑,1,   cycD1↓,2,   Cyt‑c↑,1,   Diff↑,1,   DNAdam↑,1,   Dose↝,1,   E-cadherin↑,2,   eff↑,4,   EGFR↓,1,   p‑eIF2α↑,1,   EMT↓,2,   ER Stress↑,1,   ERK↓,1,   Fibronectin↓,1,   GRP78/BiP↑,1,   HDAC↓,3,   HDAC8↓,1,   Hif1a↓,1,   HK2↓,2,   HO-1↓,1,   hTERT↓,2,   IL10↓,1,   IL1β↓,1,   IL6↓,1,   iNOS↓,1,   LDH↓,1,   LDL↓,1,   lipid-P↑,1,   Mcl-1↓,1,   MMP↓,1,   MMP↑,1,   MMP-10↓,1,   MMP2↓,2,   MMP9↓,2,   mTOR↓,1,   neuroP↑,2,   NOTCH1↑,1,   NRF2↓,1,   OS↑,1,   PARP↑,1,   PCNA↓,1,   PDK1↓,1,   PGE2↓,1,   PPARα↓,1,   RenoP↑,1,   ROS↑,2,   selectivity↑,2,   Slug↓,1,   Snail↓,1,   STAT3↓,1,   p‑STAT3↑,1,   TET1↑,1,   TLR4↓,1,   TNF-α↓,1,   TOP1↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCMig↓,1,   TumVol↓,1,   Twist↓,2,   UPR↑,1,   VEGF↓,1,   Vim↓,1,   XBP-1↓,1,   XIAP↓,1,  
Total Targets: 81

Results for Effect on Normal Cells:
AChE↓,1,   Apoptosis↓,1,   AST↓,1,   BioAv↓,1,   Catalase↑,2,   COX2↓,2,   GPx↑,1,   GR↑,1,   GSH↑,1,   GSK‐3β↓,1,   GSTs↑,1,   HDAC↓,1,   HDL↑,1,   HO-1↑,1,   IFN-γ↓,1,   IL17↓,1,   IL1β↓,1,   Inflam↓,1,   iNOS↓,2,   JNK↓,1,   lipid-P↓,1,   MAPK↓,1,   MDA↓,1,   memory↑,1,   neuroP↑,1,   NF-kB↓,3,   NO↓,1,   NRF2↑,1,   P450↓,1,   PTEN↑,1,   ROS↓,3,   SOD↑,2,   TBARS↓,1,   TNF-α↓,1,   toxicity↝,1,   VEGF↑,1,   VitC↑,1,  
Total Targets: 37

Scientific Paper Hit Count for: HDAC, Histone deacetylases
4 Chrysin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:140  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page