condition found
Features: |
Chrysin is found in passion flower and honey. It is a flavonoid. -To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary. -Note half-life 2 hrs, BioAv very poor Pathways: Graphical Pathways - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product) -Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells -HIF1A induces the expression of vascular endothelial growth factor (VEGF) -High HIF-1α expression is associated with Poor prognosis -Low HIF-1α expression is associated with Better prognosis -Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism. -Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis Key mediators of aerobic glycolysis regulated by HIF-1α. -GLUT-1 → regulation of the flux of glucose into cells. -HK2 → catalysis of the first step of glucose metabolism. -PKM2 → regulation of rate-limiting step of glycolysis. -Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis. -LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate; HIF-1α Inhibitors: -Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate). -Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions. -EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity. -Emodin: reduce HIF-1α expression. (under hypoxia). -Apigenin: inhibit HIF-1α accumulation. |
2802- | CHr,  |   | Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis |
- | in-vitro, | Pca, | DU145 | - | in-vivo, | Pca, | NA |
953- | CHr,  |   | Inhibition of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor by Chrysin in a Rat Model of Choroidal Neovascularization |
- | in-vivo, | NA, | NA |
2785- | CHr,  |   | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
- | Review, | Var, | NA |
2786- | CHr,  |   | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
- | Review, | Var, | NA |
2788- | CHr,  |   | Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:61 Target#:143 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid