condition found tbRes List
CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK↓, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


RadioS, RadioSensitizer: Click to Expand ⟱
Source:
Type:
A radiosensitizer is an agent that makes cancer cells more sensitive to the damaging effects of radiation therapy. By using a radiosensitizer, clinicians aim to enhance the effectiveness of radiation treatment by either increasing the damage incurred by tumor cells or by interfering with the cancer cells’ repair mechanisms. This can potentially allow for lower doses of radiation, reduced side effects, or improved treatment outcomes.
Pathways that help Radiosensitivity: downregulating HIF-1α, increase SIRT1, Txr

List of Natural Products with radiosensitizing properties:
-Curcumin:modulate NF-κB, STAT3 and has been shown in preclinical studies to enhance the effects of radiation by inhibiting cell survival pathways.
-Resveratrol:
-EGCG:
-Quercetin:
-Genistein:
-Parthenolide:

How radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including:
-gold nanoparticles (GNPs),
-gold triethylphosphine cyanide ([Au(SCN) (PEt3)]),
-auranofin, ceria nanoparticles (CONPs),
-curcumin and its derivatives,
-piperlongamide,
-indolequinone derivatives,
-micheliolide,
-motexafin gadolinium, and
-ethane selenide selenidazole derivatives (SeDs)


Scientific Papers found: Click to Expand⟱
2804- CHr,  Rad,    Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway
- in-vitro, CRC, HT29
RadioS↑, enhancement of the anticancer effects of chrysin upon exposure to gamma irradiation
ROS↑, excessive production of included reactive oxygen species, the dissipation of the mitochondrial membrane potential, regulation of the B cell lymphoma-2 family, activation of caspase-9, 3, and cleavage of poly (adenosine diphosphate-ribose) polymerase.
MMP↓,
Casp3↑,
Casp9↑,
cl‑PARP↑,

2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, antioxidant, anti-inflammatory, hepatoprotective, neuroprotective
*Inflam↓, inhibitory effect of chrysin on inflammation and oxidative stress is also important in Parkinson’s disease
*hepatoP↑,
*neuroP↑,
*BioAv↓, Accumulating data demonstrates that poor absorption, rapid metabolism, and systemic elimination are responsible for poor bioavailability of chrysin in humans that, subsequently, restrict its therapeutic effects
*cardioP↑, cardioprotective [69], lipid-lowering effect [70]
*lipidLev↓,
*RenoP↑, Renoprotective
*TNF-α↓, chrysin reduces levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2).
*IL2↓,
*PI3K↓, induction of the PI3K/Akt signaling pathway by chrysin contributes to a reduction in oxidative stress and inflammation during cerebral I/R injury
*Akt↓,
*ROS↓,
*cognitive↑, Chrysin (25, 50, and 100 mg/kg) improves cognitive capacity, inflammation, and apoptosis to ameliorate traumatic brain injury
eff↑, chrysin and silibinin is beneficial in suppressing breast cancer malignancy via decreasing cancer proliferation
cycD1↓, chrysin and silibinin induced cell cycle arrest via down-regulation of cyclin D1 and hTERT
hTERT↓,
VEGF↓, Administration of chrysin is associated with the disruption of hypoxia-induced VEGF gene expression
p‑STAT3↓, chrysin is capable of reducing STAT3 phosphorylation in hypoxic conditions without affecting the HIF-1α protein level.
TumMeta↓, chrysin is a potent agent in suppressing metastasis and proliferation of breast cancer cells during hypoxic conditions
TumCP↓,
eff↑, combination therapy of breast cancer cells using chrysin and metformin exerts a synergistic effect and is more efficient compared to chrysin alone
eff↑, combination of quercetin and chrysin reduced levels of pro-inflammatory factors, such as IL-1β, Il-6, TNF-α, and IL-10, via NF-κB down-regulation.
IL1β↓,
IL6↓,
NF-kB↓,
ROS↑, after chrysin administration, an increase occurs in levels of ROS that, subsequently, impairs the integrity of the mitochondrial membrane, leading to cytochrome C release and apoptosis induction
MMP↓,
Cyt‑c↑,
Apoptosis↑,
ER Stress↑, in addition to mitochondria, ER can also participate in apoptosis
Ca+2↑, Upon chrysin administration, an increase occurs in levels of ROS and cytoplasmic Ca2+ that mediate apoptosis induction in OC cells
TET1↑, In MKN45 cells, chrysin promotes the expression of TET1
Let-7↑, Chrysin is capable of promoting the expression of miR-9 and Let-7a as onco-suppressor factors in cancer to inhibit the proliferation of GC cells
Twist↓, Down-regulation of NF-κB, and subsequent decrease in Twist/EMT are mediated by chrysin administration, negatively affecting cervical cancer metastasis
EMT↓,
TumCCA↑, nduction of cell cycle arrest and apoptosis via up-regulation of caspase-3, caspase-9, and Bax are mediated by chrysin
Casp3↑,
Casp9↑,
BAX↑,
HK2↓, Chrysin administration (15, 30, and 60 mM) reduces the expression of HK-2 in hepatocellular carcinoma (HCC) cells to impair glucose uptake and lactate production.
GlucoseCon↓,
lactateProd↓,
Glycolysis↓, In addition to glycolysis metabolism impairment, the inhibitory effect of chrysin on HK-2 leads to apoptosis
SHP1↑, upstream modulator of STAT3 known as SHP-1 is up-regulated by chrysin
N-cadherin↓, Furthermore, N-cadherin and E-cadherin are respectively down-regulated and up-regulated upon chrysin administration in inhibiting melanoma invasion
E-cadherin↑,
UPR↑, chrysin substantially diminishes survival by ER stress induction via stimulating UPR, PERK, ATF4, and elF2α
PERK↑,
ATF4↑,
eIF2α↑,
RadioS↑, Irradiation combined with chrysin exerts a synergistic effect
NOTCH1↑, Irradiation combined with chrysin exerts a synergistic effect
NRF2↓, in reducing Nrf2 expression, chrysin down-regulates the expression of ERK and PI3K/Akt pathways—leading to an increase in the efficiency of doxorubicin in chemotherapy
BioAv↑, chrysin at the tumor site by polymeric nanoparticles leads to enhanced anti-tumor activity, due to enhanced cellular uptake
eff↑, Chrysin- and curcumin-loaded nanoparticles significantly promote the expression of TIMP-1 and TIMP-2 to exert a reduction in melanoma invasion


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   ATF4↑,1,   BAX↑,1,   BioAv↑,1,   Ca+2↑,1,   Casp3↑,2,   Casp9↑,2,   cycD1↓,1,   Cyt‑c↑,1,   E-cadherin↑,1,   eff↑,4,   eIF2α↑,1,   EMT↓,1,   ER Stress↑,1,   GlucoseCon↓,1,   Glycolysis↓,1,   HK2↓,1,   hTERT↓,1,   IL1β↓,1,   IL6↓,1,   lactateProd↓,1,   Let-7↑,1,   MMP↓,2,   N-cadherin↓,1,   NF-kB↓,1,   NOTCH1↑,1,   NRF2↓,1,   cl‑PARP↑,1,   PERK↑,1,   RadioS↑,2,   ROS↑,2,   SHP1↑,1,   p‑STAT3↓,1,   TET1↑,1,   TumCCA↑,1,   TumCP↓,1,   TumMeta↓,1,   Twist↓,1,   UPR↑,1,   VEGF↓,1,  
Total Targets: 40

Results for Effect on Normal Cells:
Akt↓,1,   antiOx↑,1,   BioAv↓,1,   cardioP↑,1,   cognitive↑,1,   hepatoP↑,1,   IL2↓,1,   Inflam↓,1,   lipidLev↓,1,   neuroP↑,1,   PI3K↓,1,   RenoP↑,1,   ROS↓,1,   TNF-α↓,1,  
Total Targets: 14

Scientific Paper Hit Count for: RadioS, RadioSensitizer
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:1107  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page