Database Query Results : Chrysin, , ERK

CHr, Chrysin: Click to Expand ⟱
Features:
Chrysin is found in passion flower and honey. It is a flavonoid.
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.

-Note half-life 2 hrs, BioAv very poor
Pathways:
Graphical Pathways

- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ HO1↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, HK2↓, PDKs↓, HK2↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, AMPK↓, ERK, JNK, TrxR,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ERK, ERK signaling: Click to Expand ⟱
Source:
Type:
MAPK3 (ERK1)
ERK proteins are kinases that activate other proteins by adding a phosphate group. An overactivation of these proteins causes the cell cycle to stop.
The extracellular signal-regulated kinase (ERK) signaling pathway is a crucial component of the mitogen-activated protein kinase (MAPK) signaling cascade, which plays a significant role in regulating various cellular processes, including proliferation, differentiation, and survival. high levels of phosphorylated ERK (p-ERK) in tumor samples may indicate active ERK signaling and could correlate with aggressive tumor behavior

EEk singaling is frequently activated and is often associated with aggressive tumor behavior, treatment resistance, and poor outcomes.


Scientific Papers found: Click to Expand⟱
2791- CHr,    Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction
- in-vitro, Ovarian, OV90
TumCP↓, chrysin inhibited ovarian cancer cell proliferation and induced cell death by increasing reactive oxygen species (ROS) production and cytoplasmic Ca2+ levels as well as inducing loss of mitochondrial membrane potential (MMP).
TumCD↑,
ROS↑,
Ca+2↑,
MMP↓,
MAPK↑, chrysin activated mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways in ES2 and OV90 cells in concentration-response experiments
PI3K↑, results indicate that the chrysin-induced activation of PI3K and MAPK signaling molecules, which induced apoptosis,
p‑Akt↑, Chrysin stimulated the phosphorylation of AKT and P70S6K proteins in both ES2 and OV90 cells compared to the untreated control cell
PCNA↓, treatment with chrysin attenuated the abundant expression of PCNA protein in both ES2 and OV90 cells
p‑p70S6↑,
p‑ERK↑, chrysin activated the phospho-ERK1/2, p38, and JNK proteins as members of the MAPK pathway in the ovarian cancer cells
p38↑,
JNK↑,
DNAdam↑, stimulates apoptotic events in prostate cancer cells by the accumulation of DNA fragmentation, an increase in the population of cells in the sub-G1 phase of the cell cycle
TumCCA↑,
chemoP↑, combination therapy with chrysin enhances the therapeutic effect of the chemotherapeutic agent, docetaxel, in lung cancer by reducing its adverse effects

2795- CHr,    Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53
- in-vitro, Liver, HepG2
ChemoSen↑, combination chrysin and cisplatin significantly enhanced the apoptosis of Hep G2 cancer cells
P53↑, chrysin and cisplatin increased the phosphorylation and accumulation of p53 through activating ERK1/2 in Hep G2 cells
ERK↑,
BAX↑, which led to the overexpression of the pro-apoptotic proteins Bax and DR5 and the inhibition of the anti-apoptotic protein Bcl-2.
DR5↑,
Bcl-2↓,
Casp8↑, chrysin and cisplatin promoted both extrinsic apoptosis by activating caspase-8 and intrinsic apoptosis by increasing the release of cytochrome c and activating caspase-9 in Hep G2 cells
Cyt‑c↑,
Casp9↑,

2590- CHr,    Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway
- in-vitro, GBM, T98G - in-vitro, GBM, U251 - in-vitro, GBM, U87MG
TumCP↓, Chrysin inhibited the proliferation, migration, and invasion capacity of glioblastoma cells in dose- and time-dependent manners.
TumCMig↓,
TumCI↓,
NRF2↓, chrysin deactivated the Nrf2 signaling pathway by decreasing the translocation of Nrf2 into the nucleus
HO-1↓, suppressing the expression of hemeoxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1
NADPH↓,
ERK↓, Chrysin treatment downregulates the Nrf2 pathway via inhibition of ERK signaling

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↑,1,   ALAT↓,1,   ALP↓,1,   angioG↓,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BioAv↑,1,   Ca+2↑,2,   cardioP↑,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   chemoP↑,1,   ChemoSen↑,1,   CLDN1↓,1,   COX2↑,1,   cycD1↓,1,   Cyt‑c↑,2,   DNAdam↑,2,   DR5↑,1,   E-cadherin↑,1,   eff↑,2,   EGFR↓,1,   p‑eIF2α↑,1,   EMT↓,1,   ER Stress↑,1,   ERK↓,2,   ERK↑,1,   p‑ERK↑,1,   Fibronectin↓,1,   GRP78/BiP↑,1,   HDAC↓,1,   Hif1a↓,1,   HK2↓,1,   HO-1↓,2,   hTERT↓,1,   IL10↓,1,   IL1β↓,1,   IL6↓,1,   iNOS↓,1,   JNK↑,1,   LDH↓,1,   LDL↓,1,   lipid-P↑,1,   MAPK↑,1,   Mcl-1↓,1,   MMP↓,1,   MMP↑,1,   MMP-10↓,1,   MMP2↓,1,   MMP9↓,1,   mTOR↓,1,   NADPH↓,1,   neuroP↑,1,   NOTCH1↑,1,   NRF2↓,2,   p38↑,1,   P53↑,1,   p‑p70S6↑,1,   PARP↑,1,   PCNA↓,1,   PDK1↓,1,   PGE2↓,1,   PI3K↑,1,   PPARα↓,1,   RenoP↑,1,   ROS↑,2,   Slug↓,1,   Snail↓,1,   STAT3↓,1,   TET1↑,1,   TLR4↓,1,   TNF-α↓,1,   TOP1↓,1,   TumCCA↑,1,   TumCD↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,2,   Twist↓,1,   UPR↑,1,   VEGF↓,1,   Vim↓,1,   XBP-1↓,1,   XIAP↓,1,  
Total Targets: 87

Results for Effect on Normal Cells:
AST↓,1,   COX2↓,1,   iNOS↓,1,   NF-kB↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: ERK, ERK signaling
4 Chrysin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:61  Target#:105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page