MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
2612- Ba,  MF,    The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32)
- in-vitro, Melanoma, NA
SOD1↑, SOD2↑, GPx1↑, Dose?, eff↝, SOD1↓, SOD2↓, GPx1↓,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, eff↑, Akt↓, mTOR↓, p‑STAT3↑, MMP2↑, ER Stress↑, Ca+2↑, ROS↑, selectivity↑, MMP↓, eff↑,
654- EGCG,  MNPs,  MF,    Characterization of mesenchymal stem cells with augmented internalization of magnetic nanoparticles: The implication of therapeutic potential
- in-vitro, Var, NA
*BioEnh↑,
657- EGCG,  MNPs,  MF,    Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells
- in-vitro, GBM, U87MG
*BioEnh↑,
658- EGCG,  MNPs,  MF,    Laminin Receptor-Mediated Nanoparticle Uptake by Tumor Cells: Interplay of Epigallocatechin Gallate and Magnetic Force at Nano-Bio Interface
- in-vitro, GBM, LN229
*BioEnh↑,
659- EGCG,  MNPs,  MF,    Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction
- in-vivo, Nor, NA
*BioEnh↑,
401- GoldNP,  MF,    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells
- in-vitro, Laryn, HEp2
Casp3↑, P53↑, BAX↑, Bcl-2↓,
2246- MF,    The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review
- in-vitro, Nor, NA
*Inflam↓, *IL1↓, *IL6↓, IL17↓, *TNF-α↓,
2242- MF,    Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
- in-vitro, Nor, NA
*MMP↑, *Diff↑, *OXPHOS↑, *BMD↑, ATP∅,
2247- MF,    Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis
- in-vivo, Nor, NA
*Glycolysis↓, *LDHB↑, *NAD↑, *ATP↑, *antiOx↑, *ROS↑, *YAP/TEAD↑, *PGC-1α↑, *TCA↑, *FAO↑, *OXPHOS↑,
2248- MF,    Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1α expression: Follow-up to an in vitro magnetic mitohormetic study
- in-vivo, Nor, NA
*PGC-1α↑, *GutMicro↑, *FAO↓, *Insulin↓,
2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, *tumCV↑, *Glycolysis↑, *ROS↓, *mitResp↓, *other↝, *OXPHOS↓, *pH↑, *antiOx↑, *PFKM↑, *PFKL↑, *PKM2↑, *HK2↑, *GLUT1↑, *GPx1↑, *GPx4↑, *SOD1↑,
2250- MF,  MNPs,    Confronting stem cells with surface-modified magnetic nanoparticles and low-frequency pulsed electromagnetic field
- Review, NA, NA
*Ca+2↑, *Dose↝, *BioAv↓,
2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, DNAdam↑, ROS↑, ChemoSen∅, Pyruv↓, ADP:ATP↓, ROS↑,
2252- MF,  HPT,    Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?
- Review, NA, NA
HSPs∅, *HSPs↑, eff↝, *eff↑, eff↑, eff↓,
2253- MF,    Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, Nor, NA
*Inflam↓, *TNF-α↓, *IL1β↓, *NF-kB↓, *iNOS↓, *ROS↓, Catalase↑, *SOD↑, *HSP70/HSPA5↑, *neuroP↑, *motorD↑, *antiOx↑,
2254- MF,    Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study
- in-vivo, Nor, NA
*HSP70/HSPA5↑, HSP70/HSPA5↑,
2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, *Apoptosis↓, *Inflam↓, *Trx↓, *PONs↓, *SOD2↓, *TumCG↑, *Diff↑, *HIF2a↑, *Cyt‑c↑, P21↑,
2256- MF,  HPT,    Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Nor, HBL-100
HSP70/HSPA5↑, HSP70/HSPA5∅,
2257- MF,  HPT,    HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer
- in-vitro, Ovarian, NA
eff↑, eff↑,
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, TumCG↓, OS↑, ROS↑, SOD2↑, eff↓, ECAR↓, OCR↑, selectivity↑, *toxicity∅, TumVol↓, PGC-1α↑, OXPHOS↑, Glycolysis↓, PKM2↓,
2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, Hif1a↓, *Hif1a∅, Glycolysis↓, *lactateProd↓, *ADP:ATP↓, Pyruv↓, ADP:ATP↓, *PPP↓, *mt-ROS↑, *ROS↓, RPM↑, *ECAR↓,
2244- MF,    Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer
- Review, Var, NA
RPM↑, Glycolysis∅, ROS↑, ChemoSen↑, RadioS↑, selectivity↑,
2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, *mTOR↑, *Akt↑, *PKA↑, *MAPK↑, *ERK↑, *BMP2↑, *Diff↑, *PKCδ↓, *VEGF↑, *IL10↑,
192- MF,    The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature
- Review, Arthritis, NA
*Dose↝,
2241- MF,    Pulsed electromagnetic therapy in cancer treatment: Progress and outlook
- Review, Var, NA
other↝, p‑ERK↝, P53↝, Cyt‑c↝, OXPHOS↑, Apoptosis↑, ROS↑,
2240- MF,    Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway
- in-vitro, Nor, C3H10T1/2
*Ca+2↑, *Diff↑, *BMD↑, *Wnt↑, *β-catenin/ZEB1↑, *eff↝,
2239- MF,    Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells
- in-vitro, AML, HL-60
Ca+2↑, eff↝,
2238- MF,    Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects
- Review, Var, NA
*BMD↑, *VGCC↑, *Ca+2↑, *NO↑, *eff↓,
2237- MF,    The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channels
- in-vitro, AML, KG-1 - in-vitro, Nor, HUVECs
Ca+2↑, selectivity↑, *Inflam↓, *TNF-α↓, *NF-kB↓, *Ca+2↓,
2236- MF,    Changes in Ca2+ release in human red blood cells under pulsed magnetic field
- in-vitro, Nor, NA
*Ca+2↓, *eff↓, *ROS↓,
2235- MF,    Increase of intracellular Ca2+ concentration in Listeria monocytogenes under pulsed magnetic field
- in-vitro, Inf, NA
Ca+2↑, TumCD↑,
1762- MF,  Fe,    Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
- in-vitro, RCC, NA
Dose∅, Apoptosis↑, Casp↑, tumCV↓, Casp3↑, Casp7↑, Ca+2↑, Cyt‑c↑,
594- MF,  VitC,    Static Magnetic Field Effect on the Fremy's Salt-Ascorbic Acid Chemical Reaction Studied by Continuous-Wave Electron Paramagnetic Resonance
- Analysis, NA, NA
RPM↑,
592- MF,  VitC,    Alternative radical pairs for cryptochrome-based magnetoreception
RPM↑,
3487- MF,  Rad,    High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic field
- Review, Var, NA
radioP↑, *Ca+2↑, RAS↑, MAPK↓,
3479- MF,    Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies
- Review, NA, NA
*eff↓, eff↝, *Hif1a↑, *VEGF↑, *TIMP1↑, *E2Fs↑, *MMP2↑, *MMP9↑, Apoptosis↑,
3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, *Ca+2↑, *Inflam↓, *Akt↓, *mTOR↓, selectivity↑, *memory↑, *MMPs↑, *VEGF↑, *FGF↑, *PDGF↑, *TNF-α↑, *HGF/c-Met↑, *IL1↑,
3481- MF,    No effects of pulsed electromagnetic fields on expression of cell adhesion molecules (integrin, CD44) and matrix metalloproteinase-2/9 in osteosarcoma cell lines
- in-vitro, OS, MG63 - in-vitro, OS, SaOS2
ITGA1∅, ITGB1∅, ITGA5∅, ITGB3∅, ITGB4∅, MMP2∅, MMP9∅, eff↑,
3482- MF,    Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice
- in-vitro, NA, NA
*cardioP↑, *VEGF↑, *VEGFR2↑, *Hif1a↑, *FGF↑, *ITGB1↑, *angioG↑,
3483- MF,    Pulsed Electromagnetic Fields Protect Against Brain Ischemia by Modulating the Astrocytic Cholinergic Anti-inflammatory Pathway
- NA, Stroke, NA
*Inflam↓, *STAT3↓, *p‑STAT3↓,
3484- MF,    Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2
- in-vitro, Nor, NA
*GPx↑, *SOD2↑, *Catalase↑, *GSR↑, *ROS↓,
3485- MF,    Cytoprotective effects of low-frequency pulsed electromagnetic field against oxidative stress in glioblastoma cells
- in-vitro, GBM, U87MG
*antiOx↑, *ROS↓, *cytoP↑,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
3498- MF,    Effect of Static Magnetic Field on Oxidant/Antioxidant Parameters in Cancerous and Noncancerous Human Gastric Tissues
- in-vitro, GC, NA
*SOD↑, *MDA↓, SOD↓, GPx↓, MDA↑, Catalase↑,
3500- MF,    Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress
- in-vitro, Ovarian, SKOV3
ROS↑, CSCs↓, CD44↓, SOX2↓, cMyc↓, TumMeta↓, TumCI↓, TumCMig↓, CD133↓, Nanog↓,
3501- MF,    Unveiling the Power of Magnetic-Driven Regenerative Medicine: Bone Regeneration and Functional Reconstruction
- Review, NA, NA
*VEGF↑, *BMPs↓, *SMAD4↑, *SMAD5↑, *Ca+2↑,
3536- MF,    Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis
- Review, Arthritis, NA - Review, Stroke, NA
*Inflam↓, *Diff↑, *toxicity∅, *other↑, *SOX9↑, *COL2A1↑, *NO↓, *PGE2↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *IL6↓, *IL10↑, *angioG↑, *MSCs↑, *VEGF↑, *TGF-β↑, *angioG↝, *VEGF↓, Ca+2↝,
3566- MF,    Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA)
- Study, Arthritis, NA
*Inflam↓, *QoL↑, *Pain↓, *motorD↑, *toxicity↓, *Cartilage↑, *Inflam↓,
3568- MF,    The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis
- Review, Arthritis, NA
*eff↑, *Pain↓, *motorD↑,
3569- MF,    Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic Review
- Review, Arthritis, NA
*Pain↓, *QoL↑, *motorD↑,
2261- MF,    Tumor-specific inhibition with magnetic field
- in-vitro, Nor, GP-293 - in-vitro, Liver, HepG2 - in-vitro, Lung, A549
ROS↑, Ca+2↓, Apoptosis↑, *selectivity↑, TumCG↓, *i-Ca+2↓, i-Ca+2↑,
3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, *VEGF↑, *angioG↑, Ca+2↑, ROS↑, Necroptosis↑, TumCCA↑, Apoptosis↑, *ATP↑, *FAK↑, *Wnt↑, *β-catenin/ZEB1↑, *ROS↑, p38↑, MAPK↑, β-catenin/ZEB1↓, CSCs↓, TumCP↓, ROS↑, RadioS↑, Ca+2↑, eff↓, NO↑,
3476- MF,    Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation
- in-vitro, Stroke, 1321N1 - in-vitro, Park, NA
*VEGF↑, *eff↑, *neuroP↑, *other↑, *eff↑, *Inflam↓, *Hif1a∅,
3475- MF,    A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells
- in-vitro, Nor, HT22 - Review, AD, NA
*Apoptosis↓, *LDH↓, *neuroP↑, *toxicity∅, *IL1β↓, *Inflam↓, *IL10↑, *TNF-α↓,
3474- MF,    Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration
- in-vitro, Nor, NA
*Inflam↓, *Apoptosis↓, *other↑, *PGE2↓, *COX2↓, *IL6↓, *IL8↓, *cAMP↑, *IL10↑,
3473- MF,    Therapeutic use of pulsed electromagnetic field therapy reduces prostate volume and lower urinary tract symptoms in benign prostatic hyperplasia
- Human, BPH, NA
*Inflam↓, *Dose↝, *other?,
3472- MF,    Pulsed electromagnetic field alleviates synovitis and inhibits the NLRP3/Caspase-1/GSDMD signaling pathway in osteoarthritis rats
- in-vivo, ostP, NA
*Inflam↓, *NLRP3↓, *Casp1↓, *GSDMD?,
3471- MF,    The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment
- in-vivo, Nor, NA
*BMD↑, *NLRP3↓, *proCasp1↓, *cl‑Casp1↓, *IL1β↓, *GSDMD↓,
3470- MF,    Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression
- in-vitro, Cerv, HeLa
TNF-α↑, IL6↑, ROS↑, Apoptosis↑, TumCP↓, TumCMig↓, TumCI↓,
3469- MF,    Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment
- Review, NA, NA
*eff↑, *eff↝, *other↑, Ca+2↑, ROS↑, HSP70/HSPA5↑, *NOTCH↑, *HEY1↑, *p38↑, *MAPK↑,
3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, *necrosis↓, *IL6↑, *TGF-β↑, *iNOS↑, *MMP2↑, *MCP1↑, *HO-1↑, *Inflam↓, *IL1β↓, *IL6↓, *TNF-α↓, *BioAv↑, eff⇅, DNAdam↑, Apoptosis↑, ROS↑, TumCP↓, *ROS↓, *FGF↑,
3463- MF,    Pulsed Electromagnetic Fields Alleviates Hepatic Oxidative Stress and Lipids Accumulation in db/db mice
- in-vivo, NA, NA
*hepatoP↑, *MDA↓, *GSSG↓, *GSH↑, *GPx↑, *antiOx↑, *SREBP1↓,
3462- MF,    The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride Ions
- in-vitro, Nor, NA
*NRF2↑, *Keap1↓, *SOD↑, *GPx↑, *ROS↓, *MDA↓, *SOD1↑, *SOD2↑, *GSR↑,
3459- MF,    EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESS
- in-vitro, Cerv, HeLa
GRP78/BiP↑, GRP94↑, CHOP↑, ER Stress↓,
3458- MF,    Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy
- in-vitro, GBM, NA
ER Stress↑, UPR↑, Ca+2↑, TRAIL↓, GRP78/BiP↑,
3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, H2O2↑, ROS↑, eff↑, eff↑, Ca+2↑, MAPK↑, *Catalase↑, *SOD1↑, *GPx1↑, *GPx4↑, *NRF2↑, TumAuto↑, ER Stress↑, HSPs↑, SIRT3↑, ChemoSen↑, UPR↑, other↑, PI3K↓, JNK↑, p38↑, eff↓, *toxicity?,
507- MF,    Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism
- in-vitro, Liver, HepG2 - in-vitro, Lung, A549 - in-vitro, Nor, GP-293
MMP↓, TumCG↓, ROS↑, *Ca+2↓, Ca+2↑, selectivity↑, i-pH↑,
499- MF,    The Effect of Pulsed Electromagnetic Fields on Angiogenesis
- Review, NA, NA
angioG↑, VEGF↑, VGCC↑,
500- MF,    Anti-Oxidative and Immune Regulatory Responses of THP-1 and PBMC to Pulsed EMF Are Field-Strength Dependent
- in-vitro, AML, THP1
ROS↑, Prx6↑, DHCR24↑, IL10↑,
501- MF,    Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, ChemoSen↑, chemoP↑, selectivity↑, DNAdam↑,
502- MF,    Electromagnetic field investigation on different cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, SW480 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑,
503- MF,    Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation
- in-vitro, NA, PC12
ROS↑, Ca+2↑,
504- MF,    Effect of Magnetic Fields on Tumor Growth and Viability
- in-vivo, NA, NA
TumCG↓,
505- MF,    Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach
- Case Report, NA, NA
Pain↓, OS↑,
506- MF,  doxoR,    Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells
- in-vitro, OS, LM8
TumCP↓, p‑CHK1↓, Ca+2↑, Casp3↓, Casp7↓, p‑BAD↓, ChemoSen↑,
498- MF,    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study
- in-vitro, NA, NA
Calcium↑, MMP1↑, MMP3↑, BMPs↑,
508- MF,  doxoR,    Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line
- in-vitro, BC, MCF-7
ROS↑, Apoptosis↑, TumCCA↑,
509- MF,    Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields
- Review, NA, NA
Ca+2↑, TumAuto↑, Apoptosis↑, angioG↓, ROS↑,
510- MF,    Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma. A comparison between the 12 Hz and the 460 Hz frequencies
- in-vivo, NA, NA
OS↑,
511- MF,    Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity
- in-vivo, NA, NA
TumVol↓,
512- MF,    Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, FF95
TumCP↓, *toxicity↓, ChemoSen↑, RadioS↑, selectivity↑,
590- MF,  VitC,    Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals
- in-vitro, NA, NA
RPM↑,
514- MF,    Therapeutic electromagnetic field effects on angiogenesis and tumor growth
- in-vivo, NA, NA
TumVol↓,
513- MF,    Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vivo, Pca, HeLa
TumCG↓, p‑ERK↑, cAMP⇅,
497- MF,    In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells
- vitro+vivo, NA, MCF-7 - vitro+vivo, NA, A549
TumCG↓, TumVol↓, Casp3↑, Casp7↑, Apoptosis↑, DNAdam↑, TumCCA↑, ChemoSen↑, EPR↑,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
495- MF,    How a High-Gradient Magnetic Field Could Affect Cell Life
- in-vitro, NA, HeLa
Apoptosis↑, CellMemb↑,
494- MF,    Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels
- in-vivo, NA, NA
IL9↓, TNF-α↓,
493- MF,    Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding
- in-vitro, NA, HEK293 - in-vitro, Liver, AML12
ATP↑, HSP70/HSPA5↓, HSP90↓,
492- MF,    Weak electromagnetic fields (50 Hz) elicit a stress response in human cells
- in-vitro, AML, HL-60
HSP70/HSPA5↑,
491- MF,    Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2 O2 -induced ROS production by increasing MnSOD activity
- in-vitro, neuroblastoma, SH-SY5Y
*Dose∅, *ROS↓,
490- MF,    Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP(.)
- in-vitro, Park, SH-SY5Y
ROS↑,
489- MF,    Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑,
488- MF,    Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑, p‑γH2AX↑, Chk2↑, p38↑, Apoptosis↑,
487- MF,    Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway
- in-vitro, NMSC, HaCaT
ATM↑, Chk2↑, P21↑, TumCCA↑,
486- MF,    mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
- in-vitro, Nor, HaCaT
*mTOR↑, *PI3K↑, *Akt↑, *p‑ERK↑, *other↑, *p‑JNK↑, *p‑P70S6K↑,
197- MF,    A mechanism for action of oscillating electric fields on cells

196- MF,    Mechanism for action of electromagnetic fields on cells

194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓, *BAX↓, *Casp3↓, *Bcl-xL↑, *p‑Akt↑, *MMP9↓, *p‑ERK↑, *HIF-1↓, *ROS↓, *VEGF↑, *Ca+2↓, *SOD↑, *IL2↑, *p38↑, *HSP70/HSPA5↑, *Apoptosis↓, *ROS↓, *NO↓,
517- MF,  Rad,    Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis
- in-vivo, NA, MDA-MB-231
TumMeta↓, TumCG↓,
587- MF,  VitC,    Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean
ROS↑, SOD↓, other↓,
585- MF,  VitC,    Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juice
other↓,
582- MF,  immuno,  VitC,    Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
- in-vitro, Pca, TRAMP-C1 - in-vivo, NA, NA
Fenton↑, Ferroptosis↑, ROS↑, TumCG↓, Iron↑, GPx4↓,
539- MF,    Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers
- in-vitro, NA, NA
eff↑,
538- MF,    The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift
- in-vitro, BC, MDA-MB-231 - in-vitro, Melanoma, MSTO-211H
TumCG↓, Ca+2↑, COX2↓, ATP↑, MMP↑, ROS↑, OXPHOS↑, mitResp↑,
537- MF,  immuno,    Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm
- Review, Var, NA
Apoptosis↑, ROS↑, TumAuto↑, Ca+2↑, ATP↓, eff↑, eff↑,
536- MF,    Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cells
- in-vitro, Nor, SH-SY5Y - in-vitro, GBM, T98G - in-vitro, Nor, HDFa
other∅,
535- MF,    Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ Levels
- in-vitro, Pca, PC3 - in-vitro, GBM, A172 - in-vitro, Pca, HeLa
Apoptosis↑, miR-129-5p↑, Ca+2↑, eff↝,
534- MF,    Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, Nor, MCF10
Ca+2↑, Apoptosis↑, eff↝, eff↑, selectivity↑, eff↝, eff↝,
533- MF,    Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, necrosis↑, mt-ROS↑, other↑, *STAT3↓, STAT3↑,
532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓, MMP↓, ROS↑, eff↝, selectivity↑,
531- MF,    6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels
- in-vitro, Cerv, HeLa - in-vitro, CRC, HCT116 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, RPE-1 - in-vitro, Nor, GP-293
ATP⇅,
530- MF,    Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2
- in-vivo, Nor, NA
*miR-34b-5p↓, *ALP↑, *RUNX2↑, *BMP2↑, *OCN↑, *OPN↑, *β-catenin/ZEB1↑, *STAC2↑, *Diff↑, *BMD↑,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
515- MF,    Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability
- in-vitro, Lung, A549
CellMemb↑, TumCP↓,
518- MF,    Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation
- in-vitro, NA, HCT116
EGFR↓, p‑EGFR↓,
519- MF,    Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells
- in-vitro, AML, K562
HSP70/HSPA5↑,
529- MF,    Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives
- Review, GBM, NA
Ca+2↑, ROS↑, ChemoSen↑, QoL↑, OS↑,
521- MF,    Magnetic field effects in biology from the perspective of the radical pair mechanism
- Analysis, NA, NA
RPM↑,
522- MF,    Low Magnetic Field Exposure Alters Prostate Cancer Cell Properties
- in-vitro, Pca, PC3
MMP2↑, MMP9↑, miR-21↑, miR-155↑, miR-210↑, miR-200c↓, miR-126↓,
523- MF,  MTX,    Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage
- in-vitro, AML, THP1 - in-vitro, NA, PC12 - in-vivo, Cerv, HeLa
H2O2↑, TumCD↑, CellMemb↑, eff↑,
524- MF,    Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs)
- vitro+vivo, PC, MS-1 - vitro+vivo, PC, HUVECs
other↓, TumCP↓, TumCMig↓, VEGFR2↓, TumVol↓, HSP70/HSPA5↓, HSP90↓, TumCCA↑, angioG↓,
525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, *GPx1↑, *GPx4↑, *SOD↑, *PFKM↑, *PFKL↑, *PKM2↑, *PFKP↑, *HK2↑, *GLUT1↑, *GLUT4↑, *ROS↓, *MMP↝, *Glycolysis↑, *OXPHOS↓,
526- MF,    Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Pca, HeLa - vitro+vivo, Melanoma, B16-BL6 - in-vitro, Nor, HEK293
TumCG↓, Ca+2↑, selectivity↑, *Ca+2∅, ROS↑, HSP70/HSPA5↑, AntiCan↑,
527- MF,    Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 Cells
- in-vitro, AML, APL NB4
ROS↑, other↑, p‑ERK↑, TumCP↓,
528- MF,  Caff,    Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells
- in-vitro, GBM, U373MG
Ca+2↑, TumCP∅, TumCD∅, eff↑,
656- MNPs,  MF,    Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
BioAv↑, Apoptosis↑, *toxicity↓,
402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑, iNOS↑, NF-kB↑, Bcl-2↓, miR-125b↓, ROS↑, SOD↑,
400- SNP,  MF,    Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field
- in-vitro, Laryn, HEp2
TumCP↓, Casp3↑, P53↑, Beclin-1↑, TumAuto↑, GSR↑, ROS↑, MDA↑, ROS↑, SIRT1↑, Ca+2↑, Endon↑, DNAdam↑, Apoptosis↑, NF-kB↓,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
593- VitC,  MF,    Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field Induced by Magnetic Field
RPM↓,
588- VitC,  MF,    Preparation of magnetic nanoparticle integrated nanostructured lipid carriers for controlled delivery of ascorbyl palmitate
other↑,
580- VitC,  MF,    Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum
- in-vivo, Nor, NA
*other↓, *MDA↓, *GPx∅, *SOD↑, *GSH∅,
579- VitC,  MF,    Effect of Magnetic Field on Ascorbic Acid Oxidase Activity, I
- in-vitro, NA, NA
other↝,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 136

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↓,2,   Akt↓,2,   p‑Akt↓,2,   angioG↓,3,   angioG↑,1,   AntiCan↑,1,   Apoptosis↑,22,   ATM↑,1,   ATP↓,1,   ATP↑,2,   ATP⇅,1,   ATP∅,1,   p‑BAD↓,1,   BAX↑,3,   Bcl-2↓,4,   Beclin-1↑,1,   BioAv↑,1,   BMPs↑,1,   Ca+2↓,1,   Ca+2↑,22,   Ca+2↝,1,   i-Ca+2↑,1,   Calcium↑,1,   cAMP⇅,1,   Casp↑,1,   Casp3↓,1,   Casp3↑,4,   cl‑Casp3↑,1,   Casp7↓,1,   Casp7↑,3,   Casp9↑,1,   Catalase↑,3,   CD133↓,1,   CD44↓,1,   CellMemb↑,3,   chemoP↑,1,   ChemoSen↑,8,   ChemoSen∅,1,   p‑CHK1↓,1,   Chk2↑,2,   CHOP↑,1,   cMyc↓,1,   COX2↓,1,   CSCs↓,2,   CycB↓,1,   Cyt‑c↑,1,   Cyt‑c↝,1,   DHCR24↑,1,   DNAdam↑,8,   Dose?,1,   Dose∅,1,   ECAR↓,1,   eff↓,5,   eff↑,15,   eff⇅,1,   eff↝,9,   EGFR↓,1,   p‑EGFR↓,1,   Endon↑,1,   EPR↑,1,   ER Stress↓,1,   ER Stress↑,3,   p‑ERK↑,2,   p‑ERK↝,1,   Fenton↑,1,   Ferroptosis↑,1,   Glycolysis↓,2,   Glycolysis∅,1,   GPx↓,1,   GPx1↓,1,   GPx1↑,1,   GPx4↓,1,   GRP78/BiP↑,2,   GRP94↑,1,   GSK‐3β↑,1,   GSR↑,1,   H2O2↑,2,   Hif1a↓,1,   HSP70/HSPA5↓,2,   HSP70/HSPA5↑,6,   HSP70/HSPA5∅,1,   HSP90↓,2,   HSPs↑,1,   HSPs∅,1,   IL10↑,1,   IL17↓,1,   IL6↑,1,   IL9↓,1,   iNOS↑,2,   Iron↑,1,   ITGA1∅,1,   ITGA5∅,1,   ITGB1∅,1,   ITGB3∅,1,   ITGB4∅,1,   JNK↑,1,   LIF↑,1,   MAPK↓,1,   MAPK↑,2,   MDA↑,2,   miR-125b↓,1,   miR-126↓,1,   miR-129-5p↑,1,   miR-155↑,1,   miR-200c↓,1,   miR-21↑,1,   miR-210↑,1,   mitResp↑,1,   MMP↓,3,   MMP↑,1,   MMP1↑,1,   MMP2↑,2,   MMP2∅,1,   MMP3↑,1,   MMP9↑,1,   MMP9∅,1,   mTOR↓,1,   Nanog↓,1,   Necroptosis↑,1,   necrosis↑,1,   NF-kB↓,1,   NF-kB↑,2,   NO↑,1,   OCR↑,1,   OS↑,4,   other↓,3,   other↑,5,   other↝,2,   other∅,1,   OXPHOS↑,3,   P21↑,2,   p38↑,3,   P53↑,4,   P53↝,1,   Pain↓,1,   cl‑PARP↑,2,   PGC-1α↑,1,   i-pH↑,1,   PI3K↓,2,   PKM2↓,1,   Prx6↑,1,   Pyruv↓,2,   QoL↑,1,   radioP↑,1,   RadioS↑,4,   RAS↑,1,   ROS↑,35,   mt-ROS↑,1,   RPM↓,1,   RPM↑,6,   selectivity↑,12,   SIRT1↑,1,   SIRT3↑,1,   Slug↓,1,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   SOD↓,2,   SOD↑,2,   SOD1↓,1,   SOD1↑,1,   SOD2↓,1,   SOD2↑,2,   SOX2↓,1,   STAT3↑,1,   p‑STAT3↑,1,   survivin↓,1,   TGF-β↓,1,   TNF-α↓,1,   TNF-α↑,1,   TRAIL↓,1,   TRPV1↑,1,   TumAuto↑,4,   TumCCA↑,7,   TumCD↑,3,   TumCD∅,1,   TumCG↓,11,   TumCI↓,3,   TumCMig↓,4,   TumCP↓,12,   TumCP∅,1,   tumCV↓,2,   TumMeta↓,2,   TumVol↓,5,   Twist↓,1,   UPR↑,2,   VEGF↓,1,   VEGF↑,1,   VEGFR2↓,1,   VGCC↑,1,   Vim↓,1,   Warburg↓,1,   β-catenin/ZEB1↓,2,   p‑γH2AX↑,1,  
Total Targets: 193

Results for Effect on Normal Cells:
ADP:ATP↓,1,   Akt↓,1,   Akt↑,2,   p‑Akt↑,1,   ALP↑,1,   angioG↑,4,   angioG↝,1,   antiOx↑,5,   Apoptosis↓,4,   ATP↑,2,   BAD↓,1,   BAX↓,2,   Bcl-2∅,1,   Bcl-xL↑,1,   BioAv↓,1,   BioAv↑,1,   BioEnh↑,4,   BMD↑,5,   BMP2↑,2,   BMPs↓,1,   Ca+2↓,4,   Ca+2↑,7,   Ca+2∅,1,   i-Ca+2↓,1,   cAMP↑,1,   cardioP↑,1,   Cartilage↑,1,   Casp1↓,1,   cl‑Casp1↓,1,   proCasp1↓,1,   Casp3↓,1,   Catalase↑,2,   COL2A1↑,1,   COX2↓,1,   Cyt‑c↑,2,   cytoP↑,1,   Diff↑,6,   Dose↝,3,   Dose∅,1,   E2Fs↑,1,   ECAR↓,1,   eff↓,4,   eff↑,6,   eff↝,2,   ERK↑,1,   p‑ERK↑,2,   FAK↑,1,   FAO↓,1,   FAO↑,1,   FGF↑,3,   GLUT1↑,2,   GLUT4↑,1,   Glycolysis↓,1,   Glycolysis↑,2,   GPx↑,3,   GPx∅,1,   GPx1↑,3,   GPx4↑,3,   GSDMD?,1,   GSDMD↓,1,   GSH↑,1,   GSH∅,1,   p‑GSK‐3β↑,1,   GSR↑,2,   GSSG↓,1,   GutMicro↑,1,   hepatoP↑,1,   HEY1↑,1,   HGF/c-Met↑,1,   HIF-1↓,1,   Hif1a↑,2,   Hif1a∅,2,   HIF2a↑,1,   HK2↑,2,   HO-1↑,1,   HSP70/HSPA5↑,4,   HSPs↑,1,   IL1↓,1,   IL1↑,1,   IL10↑,4,   IL1β↓,5,   IL2↑,1,   IL6↓,4,   IL6↑,1,   IL8↓,1,   Inflam↓,15,   iNOS↓,1,   iNOS↑,1,   Insulin↓,1,   ITGB1↑,1,   p‑JNK↑,1,   Keap1↓,1,   lactateProd↓,1,   LDH↓,1,   LDHB↑,1,   MAPK↑,2,   MCP1↑,1,   MDA↓,4,   memory↑,1,   miR-34b-5p↓,1,   mitResp↓,1,   MMP↑,1,   MMP↝,1,   MMP∅,1,   MMP2↑,2,   MMP9↓,1,   MMP9↑,1,   MMPs↑,1,   motorD↑,4,   MPT↑,1,   MSCs↑,1,   mTOR↓,1,   mTOR↑,2,   NAD↑,1,   necrosis↓,1,   neuroP↑,3,   NF-kB↓,3,   NLRP3↓,2,   NO↓,2,   NO↑,1,   NOTCH↑,1,   NRF2↑,2,   OCN↑,1,   OPN↑,1,   other?,1,   other↓,1,   other↑,6,   other↝,1,   OXPHOS↓,2,   OXPHOS↑,2,   p38↑,2,   p‑P70S6K↑,1,   Pain↓,3,   PDGF↑,1,   PFKL↑,2,   PFKM↑,2,   PFKP↑,1,   PGC-1α↑,2,   PGE2↓,2,   pH↑,1,   PI3K↑,1,   PKA↑,1,   PKCδ↓,1,   PKM2↑,2,   PONs↓,1,   PPP↓,1,   QoL↑,2,   ROS↓,12,   ROS↑,3,   mt-ROS↑,1,   RUNX2↑,1,   selectivity↑,1,   SMAD4↑,1,   SMAD5↑,1,   SOD↑,6,   SOD1↑,3,   SOD2↓,1,   SOD2↑,2,   SOX9↑,1,   SREBP1↓,1,   STAC2↑,1,   STAT3↓,2,   p‑STAT3↓,1,   TCA↑,1,   TGF-β↑,2,   TIMP1↑,1,   TNF-α↓,6,   TNF-α↑,1,   toxicity?,1,   toxicity↓,4,   toxicity∅,4,   Trx↓,1,   TumCG↑,1,   TumCMig↑,1,   tumCV↑,1,   VEGF↓,1,   VEGF↑,9,   VEGFR2↑,1,   VGCC↑,1,   Wnt↑,2,   YAP/TEAD↑,1,   β-catenin/ZEB1↑,3,  
Total Targets: 182

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page