condition found
Features: Therapy |
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range. The main pathways affected are: Calcium Signaling: -influence the activity of voltage-gated calcium channels. Oxidative Stress and Reactive Oxygen Species (ROS) Pathways Heat Shock Proteins (HSPs) and Cellular Stress Responses Cell Proliferation and Growth Signaling: MAPK/ERK pathway. Gene Expression and Epigenetic Modifications: NF-κB Angiogenesis Pathways: VEGF (improving VEGF for normal cells) PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models Pathways: - most reports have ROS production increasing in cancer cells , while decreasing in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells), - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases.
S, G1, G2, and M are the four phases of mitosis. |
3477- | MF,  |   | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
- | Review, | NA, | NA |
508- | MF,  | doxoR,  |   | Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line |
- | in-vitro, | BC, | MCF-7 |
497- | MF,  |   | In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells |
- | vitro+vivo, | NA, | MCF-7 | - | vitro+vivo, | NA, | A549 |
496- | MF,  |   | Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | ZR-75-1 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 |
487- | MF,  |   | Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway |
- | in-vitro, | NMSC, | HaCaT |
524- | MF,  |   | Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs) |
- | vitro+vivo, | PC, | MS-1 | - | vitro+vivo, | PC, | HUVECs |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | Bladder, | HTB-22 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:172 Target#:322 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid