Database Query Results : Magnetic Fields, , ROS

MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
Nrf2 inhibition: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
HIF-1α inhibition: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
SIRT1 inhibition:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
AMPK activation: regulates energy metabolism and can increase ROS levels when activated.
mTOR inhibition: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
HSP90 inhibition: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, Capsaicin is an agonist for transient receptor potential cation channel subfamily V member 1 (TRPV1)
eff↑, It is noteworthy that capsaicin binding to the TRPV1 receptor may be increased using a static magnetic field (SMF), thus enhancing the anti-cancer effect of capsaicin on HepG2 (human hepatoblastoma cell line) cells through caspase-3 apoptosis
Akt↓, capsaicin can regulate autophagy by inhibiting the Akt/mTOR
mTOR↓,
p‑STAT3↑, Capsaicin can upregulate the activity of the signal transducer and activator of transcription 3 (p-STAT3)
MMP2↑, increase of the expression of MMP-2
ER Stress↑, capsaicin may induce apoptosis through endoplasmic reticulum (ER) stress
Ca+2↑, and the subsequent ER release of Ca2+
ROS↑, Capsaicin-induced ROS generation
selectivity↑, On the other hand, an excess of capsaicin is cytotoxic on HepG2 cells, and normal hepatocytes to a smaller extent, by collapse of the mitochondrial membrane potential with ROS formation
MMP↓,
eff↑, combination of capsaicin and sorafenib demonstrated significant anticarcinogenic properties on LM3 HCC cells, restricting tumor cell growth

537- MF,  immuno,    Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm
- Review, Var, NA
Apoptosis↑,
ROS↑,
TumAuto↑,
Ca+2↑, Ca++ ion tumor-cell entry
ATP↓, ATP depletion
eff↑, In physical terms, the rate of rise in a magnetic pulse or oscillation (i.e., its “sharpness”) is conveyed as dB/dt). The EMF induced by that particular period of rise to the maximum amplitude may be more impactful on unique tumor cellular features
eff↑, The induction intensity (dB/dt) may well be more critical than the field maximum amplitude (B max) in this setting

538- MF,    The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift
- in-vitro, BC, MDA-MB-231 - in-vitro, Melanoma, MSTO-211H
TumCG↓, did not affect the non-malignant counterpart.
Ca+2↑,
COX2↓,
ATP↑, (ATP5B) and mitochondrial transcription (MT-ATP6)
MMP↑, significant enhancement of mitochondrial membrane potential (ΔΨm)
ROS↑, demonstrated for the first time the association of ROS production with the stimulation of the mitochondrial metabolism triggered by the electromagnetic field
OXPHOS↑,
mitResp↑, Mitochondrial respiration is increased by ELF-EMF exposure

582- MF,  immuno,  VitC,    Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
- in-vitro, Pca, TRAMP-C1 - in-vivo, NA, NA
Fenton↑, boost, Ascorbic acid (AA, C6H8O6) can act as an electron-donor
Ferroptosis↑, HCSVs and MF efficiently inhibited TRAMP-C1 growth through ferroptosis-mediated cell death.
ROS↑, The generated ferrous ions, inducing stronger Fenton-like oxidation than ferric ions, triggered the higher accumulation of ROS, and finally inhibited tumor cell growth
TumCG↓, Collectively, it was proved that the exogenous magnetic field-boosted Fenton reaction efficiently inhibit tumor growth.
Iron↑, after 10-min MF treatment, the increase of ferrous ions was found in 0.1 h
GPx4↓, combination treatment of MF and HCSVs downregulated GPX4

587- MF,  VitC,    Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean
ROS↑,
SOD↓,
other↓, ascorbic acid content decreased

2236- MF,    Changes in Ca2+ release in human red blood cells under pulsed magnetic field
- in-vitro, Nor, NA
*Ca+2↓, Pulsed magnetic field (PMF) decreases Ca2+ level of inner red blood cell (RBC).
*eff↓, PMF gives RBCs positive effect consistently in Ca2+ level and plays a role in preventing RBC hemolysis from oxidative stress and improving RBCD.
*ROS↓, PMF plays a role in preventing oxidative stress or in restoring oxidative stress on RBCs.

527- MF,    Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 Cells
- in-vitro, AML, APL NB4
ROS↑, a significant increase in ROS levels was observed shortly after exposure to ELF-EMF
other↑, F-EMF exposure promotes ATRA-induced differentiation in APL NB4 cells and suggest the possible involvement of ROS and ERK signalling pathway in this phenomenon
p‑ERK↑, ERK1/2 phosphorylation
TumCP↓, ELF-EMF exposure decreases cellular proliferation potential

520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, MPT induced by MF exposure was mediated through the ROS/GSK-3β signaling pathway.
*Cyt‑c↑, induced Cyt-c release
*ROS↑, cells exposed to the MF showed increased intracellular reactive oxidative species (ROS) levels and glycogen synthase kinase-3β (GSK-3β) dephosphorylation at 9 serine residue (Ser(9))
*p‑GSK‐3β↑,
*eff↓, attenuated by ROS scavenger (N-acetyl-L-cysteine, NAC) or GSK-3β inhibitor
*MMP∅, no significant effect on mitochondrial membrane potential (ΔΨm)
*BAX↓, Bax declined around 15% which was statistically significant while the total level of Bcl-2 reminded unchanged in cells
*Bcl-2∅,

525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis.
*GPx1↑, 4x
*GPx4↑, 2.2x
*SOD↑, SOD1/2 3.5x
*PFKM↑, 3x
*PFKL↑, 2.5x
*PKM2↑, 2.6x : activation of PKM2 enhanced angiogenesis in endothelial cells (ECs) by modulating glycolysis, mitochondrial fission, and fusion
*PFKP↑, 2.8x
*HK2↑, 4x
*GLUT1↑, 1.5x
*GLUT4↑, 1.6x
*ROS↓, reminder: normal HUVECs cells
*MMP↝, no damage, (normal cells)
*Glycolysis↑, (PFKL, PFKLM, PFKP, PKM2, and HK2) encoding the three key regulatory enzymes of glycolysis, hexokinase, phosphofructokinase, and pyruvate kinase, sharply increased when HUVECs were exposed to PEMFs
*OXPHOS↓, PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis

526- MF,    Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Pca, HeLa - vitro+vivo, Melanoma, B16-BL6 - in-vitro, Nor, HEK293
TumCG↓, Exposure to Thomas-EMF inhibited tumour growth in mice
Ca+2↑, exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca2+ influx
selectivity↑, but did not effect non-malignant cells
*Ca+2∅, only malignant cells showed enhanced Ca2+ uptake following exposure to Thomas-EMF.
ROS↑, EMF-dependent increases in reactive oxygen species, rapid influx of Ca2+, or activation of specific signaling pathway
HSP70/HSPA5↑, Some studies have shown increased expression of HSP70, a marker of cellular stress responses, in response to EMF exposures
AntiCan↑, These observations suggest that the Thomas-EMF could provide a potential anti-cancer therapy.

529- MF,    Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives
- Review, GBM, NA
Ca+2↑, U-373MG 50 Hz, 3 mT 24 h Increased the intracellular Ca2+
ROS↑, BT115, U87, BT175 50–350 Hz, 1–58 mT 2–4 h Increased the ROS level and cell death
ChemoSen↑, A growing amount of evidence has validated that LF-MFs combined with chemotherapeutic drugs have a synergistic effect in the treatment of GBM
QoL↑, For example, researchers have discovered that LF-MFs can improve the quality of life of patients with recurrent GBM
OS↑, clinical trials have also validated the excellent therapeutic efficacy of LF-MFs in prolonging OS and improving quality of life in GBM patients

532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓,
MMP↓, MCF-7 breast cancer cells showed a significant decrease in ΔΨM compared with control cells after 4 and 24 h of exposure only when ΔΨM was analyzed at 96 h
ROS↑, All three breast cell lines analyzed showed an increase in ROS levels compared to those in nonexposed cells after both 4 h and 24 h of 1.0 mT ELF-MF exposure
eff↝, short-term exposure (4–8 h, 0.1 mT and 1.0 mT) led to an increase in viability in breast cancer cells, while long and high exposure (24 h, 1.0 mT) led to a decrease in viability and proliferation in all cell lines.
selectivity↑, Conversely, we did not observe significant differences in MCF-10A live cell number after 0.1 mT ELF-MF cell exposure

533- MF,    Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑,
necrosis↑, in normal MCF10A cells
mt-ROS↑, ELF-MF significantly increase the mitochondrial reactive oxygen species production in both MCF-10A and MDA-MB-231 cells, compared to the unexposed cell
other↑, ELF-MF exposed MCF-10A cells exhibited 53 upregulated and 189 downregulated proteins compared with control cells while exposed MDA-MB-231 cells showed 242 upregulated and 86 downregulated proteins compared with the control cells.
*STAT3↓, normal cells
STAT3↑, cancer cells

3465- MF,    Magnetic fields and angiogenesis
- Review, Var, NA
angioG↓, angiogenesis of tumor tissues can be inhibited by both static and dynamic magnetic fields at animal level.
*angioG↑, In contrast, long-term or high-intensity static magnetic field treatment of non-tumor tissue seems to be able to promote angiogenesis at animal level.
selectivity↑,
Ca+2↝, People speculate that magnetic field may regulate angiogenesis by affecting multiple signal transduction pathways including the calcium signaling pathway.
ROS↝, studies showing that other molecules could be involved in this process, including ROS (reactive oxygen species, ROS), ERK and membrane-bound receptors

2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz.
TumCG↓, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival
OS↑,
ROS↑, This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression.
SOD2↑,
eff↓, anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger.
ECAR↓, decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR).
OCR↑,
selectivity↑, This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Furthermore, in cancer cells, AMF decreased ECAR and increased OCR, while there were no changes in normal cells.
*toxicity∅, did not affect non-cancerous human cells [normal human astrocyte (NHA), human cardiac fibroblast (HCF), human umbilical vein endothelial cells (HUVEC)].
TumVol↓, The results showed a significant treatment effect, as assessed by tumor volume, after conducting AMF treatment five times a week for 2 weeks
PGC-1α↑, Corresponding to the rise in ROS, there was also a time-dependent increase in PGC1α protein expression post-AMF exposure
OXPHOS↑, enhancing mitochondrial oxidative phosphorylation (OXPHOS), leading to increased ROS production
Glycolysis↓, metabolic mode of cancer cells to shift from glycolysis, characteristic of cancer cells, toward OXPHOS, which is more typical of normal cells.
PKM2↓, We extracted proteins that changed commonly in U87 and LN229 cells. Among the individual proteins related to metabolism, pyruvate kinase M2 (PKM2) was found to be inhibited in both.

2261- MF,    Tumor-specific inhibition with magnetic field
- in-vitro, Nor, GP-293 - in-vitro, Liver, HepG2 - in-vitro, Lung, A549
ROS↑, It enhances cell oxidative stress response and regulates apoptosis signaling pathway, changing intracellular Ca2+ concentration to induce apoptosis
Ca+2↓,
Apoptosis↑,
*selectivity↑, No signicant difference was found between the exposed 293T cell count versus the control group without magnetic exposure on the third day of exposure.
TumCG↓, Hepg2, A549 cell counts were signicantly lower than the unexposed control groups (the highest inhibition rate of Hepg2 was about 18%, and the highest inhibition rate of A549 was about 30%).
*i-Ca+2↓, Normal cells 293T showed a significant decrease in intracellular free calcium ion,
i-Ca+2↑, solid tumor cells showed no signicant change, while suspended tumor showed a slight increase in calcium ion

3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, Ding et al., 8 it was demonstrated that 24‐h exposure to 60 Hz, 5 mT ELF‐EMF could potentiate apoptosis induced by H2O2 in HL‐60 leukaemia cell lines.
H2O2↑,
ROS↑, One of the main mechanisms proposed for defining anticancer effects of ELF‐EMF is induction of apoptosis through upregulation of reactive oxygen species (ROS) which has also been confirmed by different experimental studies.
eff↑, intermittent 100 Hz, 0.7 mT EMF significantly enhanced rate of apoptosis in human hepatoma cell lines pretreated with low‐dose X‐ray radiation.
eff↑, 50 Hz, 45 ± 5 mT pulsed EMF, significantly potentiated rate of apoptosis induced by cyclophosphamide and colchicine
Ca+2↑, Over the past few years, lots of data have shown that ELF‐EMF exposure regulates intracellular Ca2+ level
MAPK↑, Mitogen‐activated protein kinase (MAPK) cascades are among the other important signalling cascades which are stimulated upon exposure to ELF‐EMF in several types of examined cells
*Catalase↑, ELF‐EMF exposure can upregulate expression of different antioxidant target genes including CAT, SOD1, SOD2, GPx1 and GPx4.
*SOD1↑,
*GPx1↑,
*GPx4↑,
*NRF2↑, Activation and upregulation of Nrf2 expression, the master redox‐sensing transcription factor may be the most prominent example in this regard which has been confirmed in a Huntington's disease‐like rat model.
TumAuto↑, Activation of autophagy, ER stress, heat‐shock response and sirtuin 3 expression are among the other identified cellular stress responses to ELF‐EMF exposure
ER Stress↑,
HSPs↑,
SIRT3↑,
ChemoSen↑, Contrarily, when chemotherapy and ELF‐EMF exposure are performed simultaneously, this increase in ROS levels potentiates the oxidative stress induced by chemotherapeutic agents
UPR↑, In consequence of ER stress, cells begin to initiate UPR to counteract stressful condition.
other↑, Since the only proven effects of ELF‐EMF exposure on cells are cellular adaptive responses, ROS overproduction and intracellular calcium overload
PI3K↓, figure 3
JNK↑,
p38↑,
eff↓, ontrarily, when cells are exposed to ELF‐EMF, a new source of ROS production is introduced in cells which can at least partially reverse anticancer effects observed with cell's treatment with melatonin.
*toxicity?, More importantly, ELF‐EMF exposure to normal cells in most cases has shown to be safe and un‐harmful.

3462- MF,    The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride Ions
- in-vitro, Nor, NA
*NRF2↑, Moreover, the static magnetic field had a beneficial effect on the cells with fluoride-induced oxidative stress due to stimulating the antioxidant defense.
*Keap1↓, exposure to an SMF induced a significant reduction in the level of KEAP1 mRNA compared to the untreated cells
*SOD↑, also increased activity of the antioxidant enzymes (superoxide dismutase—SOD and glutathione peroxidase—GPx) compared to the cells that had only been treated with fluoride
*GPx↑,
*ROS↓, SMF resulted in a decrease in the production of intracellular ROS and a decrease in the MDA concentration, as was shown in our previous report
*MDA↓,
*SOD1↑, SOD1, SOD2 and GSR (glutathione reductase) a significant increase in their expression was revealed in the cells that had been co-exposed to fluoride and an SMF with a 0.65 T flux density
*SOD2↑,
*GSR↑,

3464- MF,    Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology
- Review, Var, NA
AntiTum↑, frequency below 300 Hz) exert anti-tumor function, independent of thermal effects
TumCG↓, Magnetic fields (MFs) could inhibit cell growth and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation; regulate the immune system; and suppress angiogenesis and metastasis via various signaling pathways
TumCCA↑,
Apoptosis↑,
TumAuto↑,
Diff↑,
angioG↓,
TumMeta↓,
EPR↑, MFs not only promote the absorption of chemotherapy drugs by producing small holes on the surface of cell membrane
ChemoSen↑,
ROS↑, MF treatment has been shown to promote the generation of ROS in many studies (31, 71, 72), with exposure within a 60 Hz sinusoidal MF for 48 h in induced human prostate cancer for DU145, PC3, and LNCaP apoptoses
DNAdam↑, Repetitive exposure to LF-MFs induced DNA damage and accumulation of DSBs and triggered apoptosis in Hela and MCF7 cell lines
P53↑, PMFs could trigger apoptosis cell death by upregulating the p53 level and through the mitochondrial-dependent pathway
Akt↓, LF-MFs (300 mT, 6 Hz, 24 h) also induced apoptosis by suppressing protein kinase B (Akt) signaling, activating p38 mitogen-activated protein kinase (MAPK) signaling, and caspase-9, which is the executor of the mitochondrial apoptosis pathway
MAPK↑,
Casp9↑,
VEGFR2↓, reducing the expression and activation levels of VEGFR2
P-gp↓, A combination with the SMF (8.8 m T, 12 h) decreased the expression of P-glycoprotein (P-gp) in K562 cancer cells, while adriamycin itself induced an increase

3466- MF,    The effect of magnetic fields on tumor occurrence and progression: Recent advances
- Review, Var, NA
angioG↓, magnetic fields suppress tumor angiogenesis, microcirculation, and enhance the immune response.
ROS↝, magnetic fields suppress tumors by interfering with DNA synthesis, reactive oxygen species level, second messenger molecule delivery, and orientation of epidermal growth factor receptors.
EGFR↝,
TumCG↓, increasing evidence that MFs can inhibit tumor progression, the underlying mechanism is still poorly understood

3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, studies suggest that PEMF accelerates early stages of wound closure
*necrosis↓, By preventing necrosis, PEMF can potentially be used to reduce the incidence of ulcer formation and amputation in patients with diabetes.
*IL6↑, When gingival wounds were exposed to PEMF, one study measured an increased expression of various signalling molecules involved in proliferation including IL‑6, TGF‑β and iNOS
*TGF-β↑,
*iNOS↑,
*MMP2↑, The same study also found increased levels of MMP‑2, MCP‑1 and HO‑1 expression, all of which are thought to increase wound repair rate
*MCP1↑,
*HO-1↑,
*Inflam↓, PEMF has also been shown to reduce inflammation in chronic wounds through both intracellular and extracellular effects.
*IL1β↓, Multiple studies have measured reductions in inflammatory cytokines (IL‑1β, IL‑6, TNF‑α) following PEMF treatment
*IL6↓,
*TNF-α↓,
*BioAv↑, Electrochemotherapy mediated by PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models
eff⇅, PEMF at 50Hz, 1mT for 1 hour had increased keratinocyte proliferation compared to control groups, while the same tissue exposed to PEMF at 60Hz, 1.5mT for 144 hours had reduced cell proliferation
DNAdam↑, At higher frequencies (6–7mT), an increase in DNA double-strand breaks, apoptosis and levels of reactive oxygen species (ROS) were measured, contributing to the inhibition of cell proliferation.
Apoptosis↑,
ROS↑,
TumCP↓,
*ROS↓, tissues exposed to lower frequencies of PEMF (1mT) had decreased ROS levels
*FGF↑, Furthermore, both diabetes-related and non-diabetes-related incision wounds had similar levels of increased FGF‑2, promoting angiogenesis and preventing necrosis in response to ischaemic injury

3469- MF,    Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment
- Review, NA, NA
*eff↑, According to this analysis, pulse repetition frequencies higher than 100 Hz with magnet flux densities between 1 mT and 10 mT lead to the highest presence of a cellular response, although this may vary depending on the cell type and stage of growth
*eff↝, Also, repeated applications over a prolonged period of more than 10 days show a higher effect than shorter periods, while a prolonged acute exposure lasting more than 24 h seems to be less effective than an acute exposure with less than 24 h applicat
*other↑, release of Ca2+ ion and the direct activation of PEMF on voltage-gated calcium channels (VGCCs) is of great relevance.
Ca+2↑, PEMF stimulation also leads to similar membrane effects, resulting in a Ca2+ influx, which triggers further cellular signals
ROS↑, It has been proposed that the accumulation of ROS or oxidative stress may cause the upregulation of heat shock proteins (Hsp70, HIF-1), leading to cell damage.
HSP70/HSPA5↑,
*NOTCH↑, PEMF has been shown to increase the expressions of Notch4 and Hey1 during osteogenic differentiation of MSCs, suggesting that the Notch pathway, important in cellular fate and bone development, is activated by PEMF in stem cells
*HEY1↑,
*p38↑, PEMF-induced osteogenic differentiation MSCs, as well as the activation of p38 MAPK
*MAPK↑,

3470- MF,    Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression
- in-vitro, Cerv, HeLa
TNF-α↑, PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis
IL6↑,
ROS↑,
Apoptosis↑,
TumCP↓, Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05).
TumCMig↓,
TumCI↓,

2247- MF,    Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis
- in-vivo, Nor, NA
*Glycolysis↓, PEMF-treated animals exhibited decreased glycolysis and increased LDHB expression, enhancing NAD signaling and ATP production
*LDHB↑,
*NAD↑,
*ATP↑,
*antiOx↑, Antioxidant protein levels increased, controlling ROS production.
*ROS↑,
*YAP/TEAD↑, upregulation of YAP and PGC1alpha and increasing slow myosin isoforms, thus speeding up physiological recovery.
*PGC-1α↑,
*TCA↑, increased in PEMF-treated injured limbs
*FAO↑,
*OXPHOS↑, Oxidative phosphorylation was increased in the muscle of injured rats that underwent PEMF treatment

2241- MF,    Pulsed electromagnetic therapy in cancer treatment: Progress and outlook
- Review, Var, NA
other↝, PEMFs act on the cell, it will firstly change the cell membrane transport capacity, osmotic potential and ionic valves
p‑ERK↝, Also, it will cause changes in mitochondrial protein profile, decrease mitochondrial phosphor-ERK (extracellular-signal-regulated kinase), p53, and cytochrome c, and activate OxPhos.
P53↝,
Cyt‑c↝,
OXPHOS↑,
Apoptosis↑, PEMFs decreases cellular stress factors, increase energy demand, this series of reactions will eventually lead to apoptosis.
ROS↑, The introduction of PEFs and PEMFs can improve the penetration efficiency of ROS, not only reduce the concentration of drugs, but also reduce the irradiation dose of CAP, w

2244- MF,    Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer
- Review, Var, NA
RPM↑, WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis
Glycolysis∅, WEMF parallel to the magnetic field (does not enchance glycolysis)
ROS↑, WEMF can augment this effect by enhancing mitochondrial respiration, which increases ROS levels within cancer cells. This augmentation makes cancer cells more susceptible to treatment by promoting oxidative stress that can lead to apoptosis
ChemoSen↑, Chemotherapeutic agents, such as doxorubicin, primarily exert their effects by generating ROS to induce cell death. WEMF can augment this effect by enhancing mitochondrial respiration, which increases ROS levels
RadioS↑, Similarly, WEMF can enhance the efficacy of radiation therapy by increasing ROS production and sensitizing cancer cells to radiation-induced DNA damage
selectivity↑, primary advantage of WEMF is its non-invasive, non-ionizing nature, which minimizes collateral damage to healthy tissue.

2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, tNMR might have the potential to counteract the Warburg effect known from many cancer cells which are prone to glycolysis even under aerobic conditions.
Hif1a↓, combined treatment of tNMR and hypoxia (tNMR hypoxia) led to significantly altered HIF-1α protein levels, namely a further overall reduction in protein amounts
*Hif1a∅, Under normoxic conditions we did not find significant differences in Hif-1α mRNA and protein expression
Glycolysis↓, hypoxic tNMR treatment, driving cellular metabolism to a reduced glycolysis while mitochondrial respiration is kept constant even during reoxygenation.
*lactateProd↓, tNMR reduces lactate production and decreases cellular ADP levels under normoxic conditions
*ADP:ATP↓,
Pyruv↓, Intracellular pyruvate, which was as well decreased in hypoxic control cells, appeared to be further decreased after tNMR under hypoxia
ADP:ATP↓, tNMR under hypoxia further decreased the hypoxia induced decrease of the intracellular ADP/ATP ratio
*PPP↓, pentose phosphate pathway (PPP) is throttled after tNMR treatment, while cell proliferation is enhanced
*mt-ROS↑, tNMR under hypoxia increases mitochondrial and extracellular, but reduces cytosolic ROS
*ROS↓, but reduces cytosolic ROS
RPM↑, Because EMFs are known to affect ROS levels via the radical pair mechanism (RPM)
*ECAR↓, tNMR under normoxic conditions reduces the extracellular acidification rate (ECAR)

2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, PEMFs with specific parameter (4mT, 80 Hz) promoted cell migration and viability.
*tumCV↑,
*Glycolysis↑, PEMFs-exposed L929 cells was highly glycolytic for energy generation
*ROS↓, PEMFs enhanced intracellular acidification and maintained low level of intracellular ROS in L929 cells.
*mitResp↓, shifting from mitochondrial respiration to glycolysis
*other↝, Furthermore, the analysis of ECAR/ OCR basal ratio demonstrated a tendency toward to glycolytic phenotype in L929 cells under PEMF exposure, compared to control group
*OXPHOS↓, PEMFs promoted the transformation of energy metabolism pattern from oxidative phosphorylation to aerobic glycolysis
*pH↑, result of pH detection by flow cytometer indicated the pH level in L929 cells was significantly increased in the PEMFs group compared to the control group
*antiOx↑, PEMFs upregulated the expression of antioxidant or glycolysis related genes
*PFKM↑, Pfkm, Pfkl, Pfkp, Pkm2, Hk2, Glut1, were also significantly up-regulated in the PEMFs group
*PFKL↑,
*PKM2↑,
*HK2↑,
*GLUT1↑,
*GPx1↑, GPX1, GPX4 and Sod 1 expression were significantly higher in the PEMFs group compared to the control group
*GPx4↑,
*SOD1↑,

2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls
DNAdam↑,
ROS↑,
ChemoSen∅, Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab
Pyruv↓, levels of pyruvate, succinate, aspartate and adenosindiphosphate (ADP) were significantly downregulated after BEMER therapy whereas serine showed significant upregulation
ADP:ATP↓,
ROS↑, BEMER therapy increases ROS levels leading to radiosensitization via increased induction of DSBs

2253- MF,    Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, Nor, NA
*Inflam↓, LPEMFs decreased the expression of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and nuclear factor-κB.
*TNF-α↓, after 2 weeks of LPEMF treatment, the expression of TNF-α and IL-1β were decreased in comparison with the SCI group
*IL1β↓,
*NF-kB↓, administration of LPEMFs significantly reduced the immunoreactivity of NF-κB in SCI rats
*iNOS↓, Additionally, LPEMFs exposure reduced the levels of inducible nitric oxide synthase and reactive oxygen species, and upregulated the expression of catalase and superoxide dismutase.
*ROS↓, LPEMFs can alleviate the oxidative stress by reducing ROS production following SCI
Catalase↑,
*SOD↑,
*HSP70/HSPA5↑, Furthermore, treatment with LPEMFs significantly enhanced the expression of HSP70 in spinal cord-injured rats
*neuroP↑, LPEMFs exhibit strong neuroprotective effects in the nervous system
*motorD↑, LPEMF exposure can promote locomotor recovery in SCI rats
*antiOx↑, protective effect of LPEMFs on oxidative stress may be attributed to the upregulation of antioxidant enzymes.

490- MF,    Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP(.)
- in-vitro, Park, SH-SY5Y
ROS↑,

496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, attenuated by ROS scavenger NAC
PI3K↓,
Akt↓,
GSK‐3β↑,
Apoptosis↑,
cl‑PARP↑, cleaved PARP-1
cl‑Casp3↑,
BAX↑,
Bcl-2↓,
CycB↓, Cyclin B1
TumCCA↑, failure of the transition from the G2 phase to M phase
p‑Akt↓,
p‑Akt↓,

491- MF,    Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2 O2 -induced ROS production by increasing MnSOD activity
- in-vitro, neuroblastoma, SH-SY5Y
*Dose∅, 10 mins
*ROS↓, decreased reactive oxygen species production following a 30 min H2 O2 challenge

194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓,
*BAX↓,
*Casp3↓,
*Bcl-xL↑,
*p‑Akt↑,
*MMP9↓, EMF significantly decreased levels of IL-1β and MMP9 in the peri-infarct area at 24 h and 3rd day of the experiment
*p‑ERK↑, ERK1/2
*HIF-1↓,
*ROS↓, n a similar experiment, ELF-MF (50 Hz/1 mT) increased cell viability and decreased intracellular ROS/RNS in mesenchymal stem cells submitted to OGD conditions and 3 h ELF-MF exposure
*VEGF↑,
*Ca+2↓,
*SOD↑,
*IL2↑,
*p38↑,
*HSP70/HSPA5↑,
*Apoptosis↓, PEMF decreased apoptosis
*ROS↓, Nevertheless, in the presence of ischemia, EMF decreased NO and ROS concentrations.
*NO↓,

500- MF,    Anti-Oxidative and Immune Regulatory Responses of THP-1 and PBMC to Pulsed EMF Are Field-Strength Dependent
- in-vitro, AML, THP1
ROS↑, only in THP1 cells, not in normal cells ***
Prx6↑, 2x
DHCR24↑, 6x
IL10↑, 6x

509- MF,    Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields
- Review, NA, NA
Ca+2↑,
TumAuto↑,
Apoptosis↑,
angioG↓,
ROS↑,

508- MF,  doxoR,    Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line
- in-vitro, BC, MCF-7
ROS↑,
Apoptosis↑,
TumCCA↑, enhanced arrest of MCF-7 cells in the G0-G1 phase

507- MF,    Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism
- in-vitro, Liver, HepG2 - in-vitro, Lung, A549 - in-vitro, Nor, GP-293
MMP↓,
TumCG↓,
ROS↑, key to tumor growth inhibition
*Ca+2↓, Normal 293 T cells showed a significant decrease in the intracellular free calcium ion concentration.
Ca+2↑, The solid tumor cells showed no significant change, while the suspended tumor cells showed a slight increase in the calcium ion concentration
selectivity↑,
i-pH↑, In addition, the intracellular pH of A549 cells increased under the magnetic field.

503- MF,    Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation
- in-vitro, NA, PC12
ROS↑,
Ca+2↑,

4092- MF,    Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology
- Review, Var, NA
Apoptosis↑, 20 Hz; 3 mT, 60mins/day PEMFs increased apoptosis in MCF7 cells but had no effect on MCF10 cells
selectivity↑,
ROS↑, 50 Hz, 0.1–1.0 mT) for 30 min, and long‐term PEMF: undifferentiated PC12 cells increased ROS levels and decreased catalase activity
Catalase↓,
TumVol↓, 1 Hz, 100 mT, Mice exposed for 60 and 180 min daily showed a 30% and 70% tumor reduction
angioG↓, PEMFs inhibit angiogenesis in tumor tissues, suppressing tumor vascularization and reducing tumor growth, as shown by in vivo studies

4099- MF,    Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients
- Trial, Stroke, NA
*ROS↓, all parameters of oxidative stress are significantly reduced during rehabilitation using ELF-EMF, compared to the control group rehabilitated only by kinesiotherapy

4093- MF,    Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species
- in-vivo, NA, NA
*ROS↑, imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS),
*eff↑, At moderate doses, we find that reactive oxygen actively stimulates cellular repair and stress response pathways, which might account for the observed therapeutic effects to repetitive magnetic stimulation.

4116- MF,    Low‑frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, NA, NA
*Inflam↓, LPEMFs decreased the expression of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and nuclear factor-κB.
*TNF-α↓,
*IL1β↓,
*iNOS↓, LPEMFs exposure reduced the levels of inducible nitric oxide synthase and reactive oxygen species, and upregulated the expression of catalase and superoxide dismutase.
*ROS↓,
*Catalase↑,
*SOD↑,
HSP70/HSPA5↑, treatment with LPEMFs significantly enhanced the expression of HSP70 in spinal cord-injured rats.

4147- MF,    PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting Neurodegeneration
- in-vitro, AD, PC12
*ROS↓, PEMF treatment significantly counteracted H2O2- and Aβ-induced cytotoxicity by restoring cell viability, reducing reactive oxygen species production, and improving catalase activity.
*Catalase↑,
*MMP↑, PEMFs preserved the mitochondrial membrane potential and decreased caspase-3 activation and chromatin condensation
*Casp3↓,
*p‑ERK↓, Mechanistically, PEMFs inhibited ERK phosphorylation and enhanced cAMP levels, CREB phosphorylation, and BDNF expression
*cAMP↑,
*p‑CREB↑,
*BDNF↑,
*neuroP↑, PEMFs modulate multiple stress response systems, promoting neuroprotection under oxidative and amyloidogenic conditions.

4118- MF,    Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease
- Review, AD, NA
*cognitive↑, TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re-establish cognitive performance in patients with AD.
*BDNF↑, Notably, a number of studies have indicated an increase in endogenous neurotrophic content (BDNF) in the affected brain regions after TMS therapy
*neuroP↑, neuroprotective and neuroregenerative effects
*memory↑, 1 Hz LF-rTMS: reversed memory deficits, and improved spatial memory retrieval ability.
*ROS↓, 20 Hz HF-rTMS: Increased visual recognition memory functions, decreased oxidant status, increased anti-oxidant levels and improvement in familiarity-based cognition.
*antiOx↑,
*Aβ↓, Repeated electromagnetic field stimulation (3 mT; 75 Hz) Decreased Aβ toxicity
*eff↑, TMS parameters combined with short trains and long inter-train intervals carry a lower risk of side effects

4112- MF,    Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats
- in-vivo, Stroke, NA
*cardioP↑, in vivo results showed that per-treatment of PEMF could significantly improve the cardiac function in I/R injury group
*Bcl-2↑, up-regulating the expression of anti-apoptosis protein B-cell lymphoma 2 (Bcl-2) and down-regulating the expression of pro-apoptosis protein (Bax)
*BAX↓,
*ROS↓, PEMF treatment could significantly reduce the apoptosis and reactive oxygen species (ROS) levels in primary neonatal rat cardiac ventricular myocytes (NRCMs) induced by hypoxia/reoxygenation (H/R)

4110- MF,    Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia
- Review, Stroke, NA
*ROS↓, PEMFs counteract hypoxia-induced apoptosis and ROS production in neuronal-like cells and exert a strong anti-inflammatory effect on microglial cells.
*Inflam↓, PEMFs exposure is able to reduce the size of the infarct area and decrease the levels of pro-inflammatory mediators.
*other↝, Pulsed electromagnetic fields (PEMFs) act as modulators of adenosine receptors (ARs); in particular, PEMF stimulation induces a significant upregulation of A2A and A3 ARs in different cell types.
*neuroP↑, PEMFs through the specific action on A2A and A3 ARs show great potential to be exploited also to control brain inflammation and to provide neuroprotection following brain damage.
*Apoptosis↓, PEMFs exposure significantly reduced apoptosis, partially restored hypoxia inducible factor-1α (HIF-1α) activation to normoxic conditions, and inhibited ROS production.
*Hif1a↝,

4105- MF,    Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases
- Review, AD, NA
*Inflam↓, On the basis of in vitro and clinical studies on brain activity, modulation by ELF-EMFs could possibly counteract the aberrant pro-inflammatory responses present in neurodegenerative disorders reducing their severity and their onset.
*neuroP↑, TMS (60 Hz, 0.7 mT) applied to rats for 2 hours twice daily, can be neuroprotective
*NO↑, The growth curve of exposed bacteria was lower than the control, while field application increased NO levels
*ROS↓, A significant increase of free radical production has been observed after exposure to 50 Hz electromagnetic fields at a flux density of 1 mT to mouse macrophages
*NO↓, EMF represents a non-pharmacological inhibitor of NO and an inducer of MCP-1,
*MCP1↑,
*HSP70/HSPA5↑, Tokalov and Gutzeit (2004) showed the effect of ELF-EMF on heat shock genes and demonstrated that even a low dose of ELF-EMF (10 mT) caused an increase in HSPs, especially hsp70
*antiOx↑, Whereas most environmental electromagnetic radiations cause oxidative stress in the brain (Sahin and Gumuslu, 2007), ELF-EMF seems to have an antioxidant and neuroprotective effect
*NRF2↑, ELF-EMF induces the antioxidant pathway Nrf2, which is closely associated with its protective effect against neurotoxicity induced by 3-nitropropionic acid (3-NP)
*NF-kB↓, Selective inhibition of the NF-κB signaling pathway by ELF-EMF may be involved in the decrease of chemokine production.

4104- MF,    Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats
- in-vivo, NA, NA
*memory↑, Our results may allow the conclusion that exposure to ELF-EMFs can improve memory retention (but not acquisition) in the adult male rats.
*ROS↑, Although exposure to ELF-EMFs could be a factor in the development of anxious state or oxidative stress.

4103- MF,    Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats
- in-vivo, NA, NA
*Dose↝, 1, 100, 500, and 2000 microtesla (μT), 50 Hz frequency for one h/day for two months,
*memory↑, Exposure to ELF-EMF had an anxiogenic effect on rats, promoted memory, and induced oxidative stress.
*ROS↑, exposure to the magnetic fields caused a significant increase (P<0.05) in TOS in the serum of 100, 500, and 2000 μT, compared with the control group
*MDA↑, Our results declared that the exposure to the magnetic fields caused a significant increase (P<0.05) in the levels of MDA in groups 1, 100, 500, and 2000 μT, in comparison to the control group

3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, When cells are subjected to external mechanical stimulation, voltage-gated ion channels in the cell membrane open and intracellular calcium ion concentration rises
*VEGF↑, BMSCs EMF combined with VEGF promote osteogenesis and angiogenesis
*angioG↑,
Ca+2↑, 1 Hz/100 mT MC4-L2 breast cancer cells EMF lead to calcium ion overload and ROS increased, resulting in necroptosis
ROS↑,
Necroptosis↑,
TumCCA↑, 50 Hz/4.5 mT 786-O cells ELF-EMF induce G0/G1 arrest and apoptosis in cells lines
Apoptosis↑,
*ATP↑, causing the ATP or ADP increases, and the purinergic signal can upregulate the expression of P2Y1 receptors
*FAK↑, Our research team [53] found that ELE-EMF can induce calcium oscillations in bone marrow stem cells, up-regulated calcium ion activates FAK pathway, cytoskeleton enhancement, and migration ability of stem cells in vitro is enhanced.
*Wnt↑, ability of EMF to activate the Wnt10b/β-catenin signaling pathway to promote osteogenic differentiation of cells depends on the functional integrity of primary cilia in osteoblasts.
*β-catenin/ZEB1↑,
*ROS↑, we hypothesize that the electromagnetic field-mediated calcium ion oscillations, which causes a small amount of ROS production in mitochondria, regulates the chondrogenic differentiation of cells, but further studies are needed
p38↑, RF-EMF was able to suppress tumor stem cells by activating the CAMKII/p38 MAPK signaling pathway after inducing calcium ion oscillation and by inhibiting the β-catenin/HMGA2 signaling pathway
MAPK↑,
β-catenin/ZEB1↓,
CSCs↓, Interestingly, the effect of electromagnetic fields is not limited to tumor stem cells, but also inhibits the proliferation and development of tumor cells
TumCP↓,
ROS↑, breast cancer cell lines exposed to ELE-EMF for 24 h showed a significant increase in intracellular ROS expression and an increased sensitivity to further radiotherapy
RadioS↑,
Ca+2↑, after exposure to higher intensity EMF radiation, showed a significant increase in intracellular calcium ion and reactive oxygen species, which eventually led to necroptosis
eff↓, while this programmed necrosis of tumor cells was able to be antagonized by the calcium blocker verapamil or the free radical scavenger n -acetylcysteine
NO↑, EMF can regulate multiple ions in cells, and calcium ion play a key role [92, 130], calcium ion acts as a second messenger that can activate downstream molecules such as NO, ROS

3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, 50 Hz, 1 mT for 24/48/72 h SH-SY5Y (neuroblastoma Significantly increased ROS levels
*Ca+2↑, There is experimental proof that extremely low-frequency (ELF-MF) magnetic fields interact with Ca2+ channels, leading to increased Ca2+ efflux
*Inflam↓, PEMF stimulates the anti-inflammatory response of mesenchymal stem cells.
*Akt↓, nasopharyngeal carcinoma cell line. Potentially, these alterations were caused by inhibition of the Akt/mTOR signaling pathway
*mTOR↓,
selectivity↑, Ashdown and colleagues observed disruptions in the human lung cancer cell line after PMF (20 mT) exposure; in comparison, normal cells were insensitive to PMF
*memory↑, Ahmed and colleagues proved that PMF has an impact on the hippocampus, the brain region responsible for spatial orientation and memory acquisition.
*MMPs↑, In wound closure, epithelial cells, connective tissue cells, and immune cells, which promote collagen production, matrix metalloproteinase activity, growth factor release (e.g., VEGF, FGF, PDGF, TNF, HGF, and IL-1), and inflammatory environment pro
*VEGF↑,
*FGF↑,
*PDGF↑,
*TNF-α↑,
*HGF/c-Met↑,
*IL1↑,

3484- MF,    Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2
- in-vitro, Nor, NA
*GPx↑, ELF-PEMF exposure induced expression of GPX3, SOD2, CAT and GSR on mRNA, protein and enzyme activity level.
*SOD2↑,
*Catalase↑,
*GSR↑,
*ROS↓, After 5 and 6 exposures (days 4 and 7) DCF fluorescence (ROS levels) was even decreased (−14.5% and −26.5% respectively) compared to untreated hOBs

3485- MF,    Cytoprotective effects of low-frequency pulsed electromagnetic field against oxidative stress in glioblastoma cells
- in-vitro, GBM, U87MG
*antiOx↑, The cytoprotective effect of PEMF against deleterious effects of oxidative stress triggered by different time interval of H2O2 treatment might be mediated by the increase in the cell viability, the elevation in the antioxidant enzyme activity/amount,
*ROS↓,
*cytoP↑,

3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, It is established that pulsed electromagnetic field (PEMF) therapy can enhance the effects of anti-cancer chemotherapeutic agents
tumCV↓, co-treatment with etoposide and PEMFs led to a decrease in viable cells compared with cells solely treated with etoposide.
cl‑PARP↑, PEMFs elevated the etoposide-induced PARP cleavage and caspase-7/9 activation and enhanced the etoposide-induced down-regulation of survivin and up-regulation of Bax.
Casp7↑,
Casp9↑,
survivin↓,
BAX↑,
DNAdam↑, PEMF also increased the etoposide-induced activation of DNA damage-related molecules
ROS↑, the reactive oxygen species (ROS) level was slightly elevated during etoposide treatment and significantly increased during co-treatment with etoposide and PEMF.
eff↓, Moreover, treatment with ROS scavenger restored the PEMF-induced decrease in cell viability in etoposide-treated MCF-7 cells

3728- MF,    Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD mice
- in-vivo, AD, NA
*cognitive↑, ELF-MF exposure ameliorated cognitive deficits and increased synaptic proteins in 3xTg mice.
*neuroP↑, protective effects of ELF-MF exposure may have also been caused by the inhibition of apoptosis and/or decreased oxidative stress levels that were observed in the hippocampus tissues of treated mice.
*Apoptosis↓,
*ROS↓,
*p‑tau↓, tau hyperphosphorylation was decreased in vivo because of ELF-MF exposure, and this decrease was induced by the inhibition of GSK3β and CDK5 activities and activation of PP2Ac.
*GSK‐3β↓,
*CDK5↓,

3500- MF,    Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress
- in-vitro, Ovarian, SKOV3
ROS↑, SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells.
CSCs↓,
CD44↓, xpressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc).
SOX2↓,
cMyc↓,
TumMeta↓, High Levels of Cellular ROS Inhibit Ovarian Cancer Cell Migration and Invasion
TumCI↓,
TumCMig↓, Moderate SMFs Increase Ovarian Cancer Cell ROS Levels and Inhibit Cell Migration
CD133↓, stemness-related genes were significantly downregulated by SMF treatment, including Sox2, Nanog, C-myc, CD44, and CD133
Nanog↓,

3745- MFrot,  MF,    The neurobiological foundation of effective repetitive transcranial magnetic brain stimulation in Alzheimer's disease
- Review, AD, NA
*neuroP↑, neuroprotective actions aimed at mitigatingoxidative stress and inflammation, and intense stimulation of neu-rotrophic factors
*ROS↓,
*Inflam↓,
*5HT↑, increase in serotoninand its metabolites and a change in the properties of serotonergicreceptors.
*cFos↑, in rats, a single session of bothLF- (1 Hz) and HF-rTMS (10 Hz) enhanced c-Fos expression in all exam-ined cortical areas
*Aβ↓, rTMS enhances neuronal viability and counteracts oxidative stressors, such as Aβ and glutamate toxicity, in vitro
*memory↑, downregulation results in memory impairments
*BDNF↑, long-term change in synaptic proteinexpression due to BDNF-TrkB pathway activation following rTMSprotocols
*Ach↑, rTMSincreases ACh levels by modulating AChE activity.
*AChE↓,
*cognitive↑, HF-rTMS (20 Hz) and LF-rTMS (1 Hz)—in termsof neurotransmitter circuits and neurogenic signaling. 142 While bothprotocols improved cognition-related behaviors
*BDNF↑, Notably, rTMS could enhance BDNF and NGF expression irrespec-tive of frequency,
*NGF↑,
*β-catenin/ZEB1↑, both LF-rTMS (1 Hz) and HF-rTMS (10 Hz)protocols enhanced cognitive performance through the activation of β-catenin via the regulation of glycogen synthase kinase-3β (GSK-3β) andTau
*p‑Akt↓, 3 weeks, iTBS reducedinflammation and increased anti-inflammatory molecules, specificallylinked to reversing the downregulation of phosphorylated forms ofAkt and the mammalian target of rapamycin.
*mTOR↓,
*MMP1↓, 6 months, patients showed significant reductions in plasma levels of MMP1, MMP9, and MMP10, along with increases in TIMP1 and TIMP2
*MMP9↓,
*MMP-10↓,
*TIMP1↑,
*TIMP2↑,

3567- MFrot,  MF,    The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
- Review, Stroke, NA
*eff↑, All included studies showed a beneficial effect of ELF-MFs on stroke patients
*ROS↓, Improvements were observed in domains such as oxidative stress, inflammation, ischemic lesion size, functional status, depressive symptoms and cognitive abilities.
*Inflam↓,
*cognitive↑, An improvement in cognitive abilities reported in some of the included studies [25,26,27,28] is in line with other researchers’ finding
*Catalase↑, Cichoń et al. [27] also showed that catalase activity in erythrocytes and superoxide dismutase were significantly higher in the experimental group than in the control group.
*SOD↑,
*SOD1↑, similar effect was observed in regard to SOD1 and SOD2 mRNA levels.
*SOD2↑,
*GPx1↑, ELF-MFs impacted also the expression of GPx1 and GPx4 mRNA, which increased in the experimental group about 160% (p < 0.001) and 140% (p < 0.001), respectively.
*GPx4↑,
*IL1β↑, blood samples of IL-1β in the experimental group after 10 sessions of rehabilitation which involved ELF-MFs were significantly higher than in the control group
*neuroP↑, majority of the articles included in this study, a neuroprotective effect of ELF-MFs was indicated
*toxicity∅, Particularly noteworthy is the fact that none of the studies included in this review reported any negative side effects of ELF-MFs.

3489- MFrot,  MF,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice.
- in-vivo, AD, NA
*Aβ↓, RMF directly inhibited Aβ amyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells .
*motorD↑, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities.
*cognitive↑,
*memory↑,
*ROS↓, reduced oxidative stress in the APP/PS1 mouse brain.

3497- MFrot,  MF,    The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets
- Human, Nor, NA
*PDGFR-BB↑, The highest concentration of PDGF-BB was observed in the samples placed in RMF for 1 h at 25 Hz
*TGF-β↑, For TGF-β1, the highest concentrations were obtained in the samples exposed to RMF for 3 h at 25 Hz and 1 h at 50 Hz.
*IGF-1↑, highest concentrations of IGF-1 and FGF-1 were shown in plasma placed in RMF for 3 h at 25 Hz.
*FGF↑,
*angioG↑, Magnetic fields have been shown to have a beneficial effect on vasodilation, angiogenesis, accelerating repair, regeneration, and healing of soft tissues, nervous tissues and bones, analgesic aspects, anti-swelling, reducing inflammation and pain, an
*Inflam↓,
*ROS↓, RMF exposure can increase resistance to heat stress, reduce levels of ROS, affect intracellular calcium ion concentrations, and contribute to cell aging deceleration

3499- MFrot,  MF,    Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans
- in-vitro, Nor, HUVECs
*AntiAge↑, RMF exposure prolonged the lifespan of C. elegans and slowed the aging of HUVECs
*AMPK↑, RMF treatment of HUVECs showed that activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) was associated with decreased mitochondrial membrane potential (MMP) due to increased intracellular Ca2+ concentrations induced by endo
*mPGES-1↓,
*Ca+2↑,
*ER Stress↑,
*OS↑, prolonged lifespan of C. elegans was associated with decreased levels of daf-16 which related to the insulin/insulin-like growth factor signaling pathway (IIS) activity and reactive oxygen species (ROS),
*ROS↓,

2258- MFrot,  MF,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, GBM patient reversed the progression of his recurrent tumor causing >30% reduction in its contrast-enhanced volume within 4 weeks of treatment
OS↑, Mice with implanted mouse glioma cells in their brains also showed marked reduction in tumor size, increased survival (p< 0.05, n = 10)
γH2AX↑, higher DNA damage (g-H2AX foci) after sOMF treatment with a whole-body stimulation method developed by us
DNAdam↑,
selectivity↑, Normal mice exposed to sOMF for 4 months had no adverse effects on the brain and other organs
ROS↑, sOMF markedly increased reactive oxygen species (ROS) levels in cancer cells leading to the selective death of these cells, while sparing normal neurons and astrocytes
TumCD↑,
eff↑, sOMF exposure for just 2 h resulted in >40% loss of surviving GBM and DIPG cell colonies detected by clonogenic cell survival assay, similar to that produced by 2 Gy radiation dose.
eff↓, This loss was rescued by the antioxidant Trolox

2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Oncomagnetic patent Fig 2
Bcl-2↓,
BAX↑,
Bak↑,
Cyt‑c↑,
Casp3↑, caspase staining rises progressively until after 30 min most of the cells fluoresce positive for caspase, revealing activation of this enzyme
Casp9↑,
DNAdam↑,
ROS↑, applying the oscillating magnetic field to the tissue increases the production of reactive oxygen species (ROS )
lactateProd↑,
Apoptosis↑,
MPT↑, opening of the mitochondrial membrane permeability transition pore
*selectivity↑, repetitive magnetic stimulation has shown decreased apoptosis in non -cancerous cells .
eff↑, oncomagnetic therapy may be performed in conjunction with other forms of therapy such as with chemotherapy, other forms of radiative therapy, with drugs and prescriptions, etc
MMP↓, OMF which in turn produces rapidly fluctuating or sustained depolarizations of the mitochondrial membrane potential (MMP) in the tissue .
selectivity↑, Because normal cells have a larger amount of mitochondria, have lower demand for ATP, and are not under stress, disruption of electron flow and small amount of ROS formation and MMP depolarization does not trigger apoptosis
TCA?, decrease in Krebs cycle metabolites
H2O2↑, increase in peroxide levels in GBM cells following stimulation by the system 100 using a rotating magnet
eff↑, combine the administration of BHB , or acetoacetate , or free fatty acid, or branched chain amino acid, or cryptochrome agonist , or MGMT inhibitor, or DNA alkylating agent, or DNA methylating agent, and OMF as a more effective treatment of cancer
*antiOx↑, upregulation of antioxidant mechanisms due to the application of OMFs further protects non -cancerous cells from any ROS -mediated apoptosis
H2O2↑, The experiments showed rapid increases in the levels of superoxide and H2O2 in GBM cells
eff↓, To test whether cell death is caused by the OMF - induced increase in ROS , a potent antioxidant Trolox was used to counteract it, while measuring the decrease in GBM cell count due to 4 h exposure to OMF.
GSH/GSSG↓, GSH/GSSG ratio almost exactly half that seen in control cells
*toxicity∅, No Cytotoxic Effect in Normal Cells
OS↑, OMF -Induced Prolongation of Survival in a Mouse Xenograft Model of GBM

204- MFrot,  MF,    Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization
- in-vivo, AD, NA
*NF-kB↓, RMF improves memory and cognitive impairments in a sporadic AD model, potentially by promoting the M1 to M2 transition of microglial polarization through inhibition of the NF-кB/MAPK signaling pathway.
*MAPK↓,
*TLR4↓,
*memory↑,
*cognitive↑,
*TGF-β1↑, RMF treatment promoted the expression of anti-inflammatory cytokines (TGF-β1, Arg-1, IL-4, IL-10)
*ARG↑, Arg-1
*IL4↑,
*IL10↑,
*IL6↓,
*IL1↓, IL-1β
*TNF-α↓,
*iNOS↓,
*ROS↓, in mice brain
*NO↓, in serum
*MyD88↓,
*p‑IKKα↓, phosphorylated IKKα/β, IкBα, NF-кB p65, JNK, p38,
*p‑IκB↓, IкBα
*p‑p65↓,
*p‑JNK↓,
*p‑p38↓,
*ERK↓,
*neuroP↑, RMF treatment resulted in reduced aluminum deposition in the brains of AD mice.
*Aβ↓, RMF treatment reduced Aβ deposition in the AD model mice

209- MFrot,  MF,    The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary study
- Human, NA, NA
*SOD↑, RFM can reduce oxidative stress, as evidenced by higher SOD and CAT activities in the CG than in samples placed in the RFM.
*Catalase↑,
*ROMO1↑, required 3hrs
*MDA↓, Too long a stay in the RMF at the frequency of 50 Hz increased the level
*TAC↑, RFM at 50 Hz increased the TAC level,
*ROS↓, In the case of ROMO1, it is stated that 1 h 25 Hz are the optimal conditions for no increased production of ROS.

212- MFrot,  MF,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease mice
- in-vivo, AD, SH-SY5Y
*β-Amyloid↓, Aβ amyloid fibril formation
*cognitive↑,
*motorD↑, RMF improves motor and exploration abilities in APP/PS1 mice
*ROS↓, RMF reduces oxidative stress in APP/PS1 mouse brains and lipid deposition in the liver
*memory↑, RMF significantly alleviates spatial memory impairments in APP/PS1 mice
*Aβ?, 0.4 T RMF inhibits Aβ amyloid fibril formation in vitro

199- MFrot,  MF,    Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing Study
- in-vivo, Wounds, L929 - NA, NA, HaCaT
*ROS↑,
*Ca+2↓,
*other↝, (i) WMF can evoke new tissue production/regeneration (stem cell proliferation and subsequent differentiation) due to manipulation of ROS levels and also downstream heat shock protein 70 (Hsp70) expression
*other↝, (ii) The magnetic field causes changes in membrane potential and temporary membrane permeabilization that affects sodium content and potassium-efflux or the transmembrane voltage
*other↝, (iii) The calcium gradient between the extracellular and intracellular fluid is a transduction second messenger [28], and its gradient could potentially be affected by EMFs and MFs.
*other↝, (iv) MF may induce changes in enzymatic activities (e.g., enzymes involved in mitochondrial metabolism).
*other↝, (v) MF may cause cytoskeletal organization (due to reorganization of the electrostatically negative charged actin filaments), and those changes may affect the cellular shape, endoplasmic reticulum, mitotic apparatus
*other?, vi) Finally, the RMF creates the mixing process at the micro-level and may affect the energy level; some of the selected molecules strongly influence the transfer processes between the living cells and the culture medium

516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓,
Apoptosis↑,
TumCMig↓,
ROS↑, treatment with OM-100 led to an increase in intracellular ROS levels
PD-L1↑, upregulating PD-L1 expression, thereby enhancing the efficacy of anti-PD-1 immunotherapy
TumVol↓, in mice
eff↑, enhance the efficacy of anti‑PD‑1 immunotherapy in vivo
*toxicity∅, OM-100 did not result in noteworthy changes in the blood routine parameters (Gran, HCT, HGB, Lymph, MCH, MCV, PLT, RBC, MPV, and WBC) and biochemical indicators (ALT, AST, T-BIL, CREA, TG, TC, HDL-c, and LDL-c) in normal mice
eff↑, Particularly, there was a more pronounced response to anti-PD-1 therapy in patients whose tumors expressed PD-L1 3
*toxicity∅, OM-100 treatment in healthy mice showed no adverse effects, indicating its safety for normal tissues.
Dose↝, 24-day treatment with a magnetic field intensity of 1.066 mT and a frequency of 100 kHz (figure shows motor driven 120Hz, 7200rpm pulsed
tumCV↓, anti-tumor efficacy of OM-100 treatment, which by impairing cell viability, increasing apoptosis, inhibiting cell migration, and invasion capabilities, as well as promoting oxidative stress.
TumCI↓,

186- MFrot,  MF,    Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields
- in-vitro, GBM, GBM - in-vitro, Lung, NA
mt-ROS↑,
Casp3↑,
selectivity↑, OMF induces highly selective cell death of patient derived GBM cells associated with activation of caspase 3, while leaving normal tissue cells undamaged
TumCD↑,

187- MFrot,  MF,    Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice
- in-vivo, GBM, NA
selectivity↑, Our in vitro experiments demonstrated selective cancer cell death while sparing normal cells by sOMF-induced increase in intracellular reactive oxygen species (ROS) levels due to magnetic perturbation of mitochondrial electron transport.
ROS↑,
*ROS∅,
*toxicity∅, no significant adverse effects of chronic or acute sOMF stimulation on the health, behavior, electrocardiographic and electroencephalographic activities, hematologic profile, and brain and other tissue and organ morphology of treated mice

188- MFrot,  MF,    Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells
- in-vitro, GBM, GBM115 - in-vitro, GBM, DIPG
ROS↑, both GBM and DIPG cells ROS generated by sOMF
SDH↓, Complex II succinate dehydrogenase
eff↓, antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect
RPM↑, we hypothesized that the interaction of weak and intermediate strength magnetic fields with the RPM mechanism in the mitochondrial ETC can perturb the electron transfer process (MEP hypothesis) to generate superoxide.
eff↓, We observed that Helmholtz coil did not produce any significant increase in ROS at 2 and 4 h during stimulation or 2 h poststimulation in GBM and DIPG cells
eff↑, oscillating field alone is not sufficient to induce ROS and that the changing angle of the magnetic field axis is also required to achieve this effect.
eff↝, repeated pulse trains rising to and declining from the peak frequency with intervening pauses are sufficient to achieve near maximum level of increase in ROS
eff↝, One spinning magnet or three spinning magnets generate similar cellular ROS levels and the effect of variation of the stimulus off period.
Casp3↑, caspase 3 activation
eff↝, This indicates that the total amount of energy delivered to cancer cells is clearly not the determinant of the potency of stimulation. Instead, it appears that the longer Toff between stimuli of 750 ms in the 4-h stimulation, as opposed to 250 ms in
SOD↓, critical rise in superoxide in two types of human glioma cells (implies SOD capacity exceeded)

184- MFrot,  MF,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, sOMF
mitResp↓, Inhibit Mitochondrial Respiration
mtDam↑, Produce Loss of Mitochondrial Integrity
Dose↝, Repeated intermittent sOMF was applied for 2 hours at a specific frequency, in the 200-300 Hz frequency range, with on-off epochs of 250 or 500 ms duration.
MMP?, ROS generation has been shown to be driven, in part, by elevated mitochondrial membrane chemiosmotic potential (ΔΨ) and ubiquinol (QH2)
OCR↓, Immediately after cessation of field rotation we observe a loss of mitochondrial integrity (labeled LMI), with a very rapid increase in O2 consumption
mt-H2O2↑, We have previously demonstrated that sOMF treatment of cells generates superoxide/hydrogen peroxide in the mitochondrial matrix
eff↓, we repeated the same experiment in the presence of Trolox, which protects thiols from ROS oxidation (47). sOMF treatment of RLM in State 3u pre-treated with Trolox (15 μM), show minimal inhibition,
SDH↓, SDH Inhibition by sOMF in State 3u RLM Is Caused by ROS Generation
Thiols↓, suggest that thiol oxidation in SDH may result from sOMF.
GSH↓, Glutathione in the mitochondrial matrix can provide some protection from ROS, but after solubilizing the mitochondria, this protection is lost and the SDH becomes more sensitive to sOMF.
TumCD↑, sOMF is highly effective at killing non-dividing GBM cell cultures,
Casp3↑, caspase-3 activation 1 h after sOMF
Casp7↑, rapid activation of caspase-3/7
MPT↑, OMF-treated cell that causes near simultaneous MPT, release of cytochrome c and other apoptosis-inducing factors, resulting in caspase-3/7 activation in these GBM cells.
Cyt‑c↑,
selectivity↑, differential sensitivity to sOMF of cancer cells over ‘normal’ cells becomes apparent. rapid increase in the reactive oxygen species (ROS) in the mitochondria to cytotoxic levels only in cancer cells, and not in normal human cortical neurons
GSH/GSSG↓, increasing GSSG/GSH ratio

227- MFrot,  MF,    Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway
- in-vivo, Lung, A549 - in-vitro, Lung, A549
TumCG↓,
miR-486↑, decreased expression of miR-486 and an increased expression of BCAP were found in tumor tissues of lung cancer patients
BCAP↓,
Apoptosis↑,
ROS↑,
TumAuto↑, miR-486 is required for LF-MFs triggered autophagy
LC3II↑,
ATG5↑,
Beclin-1↑,
p62↑, blocked p62 degradation
TumCP↓,

225- MFrot,  MF,    Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
- vitro+vivo, Lung, NA
MMP2↓,
MMP9↓,
FOXP3↓,
ROS↑,
p‑Akt↓,

220- MFrot,  MF,    Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation
- in-vitro, Melanoma, B16-F10
OS↑, prolonged the mouse survival rate
DCells↑,
T-Cell↑,
Apoptosis↑,
IL1↑,
IFN-γ↓, most of cytokines were decreased
IL10↑,
TumCG↓, grow slowed
ROS↑, Phagocyte activity, ROS release and interleukin-1β (IL-1β) production were significantly promoted after continuous exposure to 50 Hz LF-MF (1mT)

356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑,
P53↑, Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment.
iNOS↑,
NF-kB↑,
Bcl-2↓,
ROS↑, the present study evaluated the levels of ROS as well as the antioxidant enzymes (SOD and CAT)
SOD↑,
TumCCA↑, S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively.
eff↑, Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination
Catalase↑, Catalase (CAT)
other↑, swollen cells, swollen nuclei with mixed euchromatin and heterochromatin, ruptured cell membranes

400- SNP,  MF,    Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field
- in-vitro, Laryn, HEp2
TumCP↓, especially in the G0/G1 and S phases.
Casp3↑,
P53↑,
Beclin-1↑,
TumAuto↑,
GSR↑, oxidative stress biomarker
ROS↑, oxidative stress biomarker
MDA↑, oxidative stress biomarker
ROS↑,
SIRT1↑,
Ca+2↑, induce apoptosis in osteoclasts by increasing intracellular and nucleus Ca2+ concentration
Endon↑, increases endonuclease activity
DNAdam↑,
Apoptosis↑,
NF-kB↓,

402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑,
iNOS↑,
NF-kB↑,
Bcl-2↓,
miR-125b↓,
ROS↑, 2.9x for 2hr
SOD↑, 2.4x for 2hr


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 79

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↓,2,   Akt↓,3,   p‑Akt↓,3,   angioG↓,5,   AntiCan↑,1,   AntiTum↑,1,   Apoptosis↑,18,   ATG5↑,1,   ATP↓,1,   ATP↑,1,   Bak↑,1,   BAX↑,3,   BCAP↓,1,   Bcl-2↓,4,   Beclin-1↑,2,   Ca+2↓,1,   Ca+2↑,13,   Ca+2↝,1,   i-Ca+2↑,1,   Casp3↑,5,   cl‑Casp3↑,1,   Casp7↑,2,   Casp9↑,3,   Catalase↓,1,   Catalase↑,2,   CD133↓,1,   CD44↓,1,   ChemoSen↑,5,   ChemoSen∅,1,   cMyc↓,1,   COX2↓,1,   CSCs↓,2,   CycB↓,1,   Cyt‑c↑,2,   Cyt‑c↝,1,   DCells↑,1,   DHCR24↑,1,   Diff↑,1,   DNAdam↑,7,   Dose↝,2,   ECAR↓,1,   eff↓,9,   eff↑,13,   eff⇅,1,   eff↝,4,   EGFR↝,1,   Endon↑,1,   EPR↑,1,   ER Stress↑,2,   p‑ERK↑,1,   p‑ERK↝,1,   Fenton↑,1,   Ferroptosis↑,1,   FOXP3↓,1,   Glycolysis↓,2,   Glycolysis∅,1,   GPx4↓,1,   GSH↓,1,   GSH/GSSG↓,2,   GSK‐3β↑,1,   GSR↑,1,   H2O2↑,3,   mt-H2O2↑,1,   Hif1a↓,1,   HSP70/HSPA5↑,3,   HSPs↑,1,   IFN-γ↓,1,   IL1↑,1,   IL10↑,2,   IL6↑,1,   iNOS↑,2,   Iron↑,1,   JNK↑,1,   lactateProd↑,1,   LC3II↑,1,   MAPK↑,3,   MDA↑,1,   miR-125b↓,1,   miR-486↑,1,   mitResp↓,1,   mitResp↑,1,   MMP?,1,   MMP↓,5,   MMP↑,1,   MMP2↓,1,   MMP2↑,1,   MMP9↓,1,   MPT↑,2,   mtDam↑,1,   mTOR↓,1,   Nanog↓,1,   Necroptosis↑,1,   necrosis↑,1,   NF-kB↓,1,   NF-kB↑,2,   NO↑,1,   OCR↓,1,   OCR↑,1,   OS↑,5,   other↓,1,   other↑,4,   other↝,1,   OXPHOS↑,3,   P-gp↓,1,   p38↑,2,   P53↑,4,   P53↝,1,   p62↑,1,   cl‑PARP↑,2,   PD-L1↑,1,   PGC-1α↑,1,   i-pH↑,1,   PI3K↓,2,   PKM2↓,1,   Prx6↑,1,   Pyruv↓,2,   QoL↑,1,   RadioS↑,3,   ROS↑,46,   ROS↝,2,   mt-ROS↑,2,   RPM↑,3,   SDH↓,2,   selectivity↑,14,   SIRT1↑,1,   SIRT3↑,1,   SOD↓,2,   SOD↑,2,   SOD2↑,1,   SOX2↓,1,   STAT3↑,1,   p‑STAT3↑,1,   survivin↓,1,   T-Cell↑,1,   TCA?,1,   Thiols↓,1,   TNF-α↑,1,   TRPV1↑,1,   TumAuto↑,6,   TumCCA↑,5,   TumCD↑,4,   TumCG↓,10,   TumCI↓,3,   TumCMig↓,3,   TumCP↓,9,   tumCV↓,2,   TumMeta↓,2,   TumVol↓,4,   UPR↑,1,   VEGFR2↓,1,   Warburg↓,1,   β-catenin/ZEB1↓,1,   γH2AX↑,1,  
Total Targets: 153

Results for Effect on Normal Cells:
5HT↑,1,   Ach↑,1,   AChE↓,1,   ADP:ATP↓,1,   Akt↓,1,   p‑Akt↓,1,   p‑Akt↑,1,   AMPK↑,1,   angioG↑,4,   AntiAge↑,1,   antiOx↑,7,   Apoptosis↓,3,   ARG↑,1,   ATP↑,2,   Aβ?,1,   Aβ↓,4,   BAD↓,1,   BAX↓,3,   Bcl-2↑,1,   Bcl-2∅,1,   Bcl-xL↑,1,   BDNF↑,4,   BioAv↑,1,   Ca+2↓,4,   Ca+2↑,3,   Ca+2∅,1,   i-Ca+2↓,1,   cAMP↑,1,   cardioP↑,1,   Casp3↓,2,   Catalase↑,6,   CDK5↓,1,   cFos↑,1,   cognitive↑,7,   p‑CREB↑,1,   Cyt‑c↑,1,   cytoP↑,1,   Dose↝,1,   Dose∅,1,   ECAR↓,1,   eff↓,2,   eff↑,4,   eff↝,1,   ER Stress↑,1,   ERK↓,1,   p‑ERK↓,1,   p‑ERK↑,1,   FAK↑,1,   FAO↑,1,   FGF↑,3,   GLUT1↑,2,   GLUT4↑,1,   Glycolysis↓,1,   Glycolysis↑,2,   GPx↑,2,   GPx1↑,4,   GPx4↑,4,   GSK‐3β↓,1,   p‑GSK‐3β↑,1,   GSR↑,2,   HEY1↑,1,   HGF/c-Met↑,1,   HIF-1↓,1,   Hif1a↝,1,   Hif1a∅,1,   HK2↑,2,   HO-1↑,1,   HSP70/HSPA5↑,3,   IGF-1↑,1,   p‑IKKα↓,1,   IL1↓,1,   IL1↑,1,   IL10↑,1,   IL1β↓,3,   IL1β↑,1,   IL2↑,1,   IL4↑,1,   IL6↓,2,   IL6↑,1,   Inflam↓,9,   iNOS↓,3,   iNOS↑,1,   p‑IκB↓,1,   p‑JNK↓,1,   Keap1↓,1,   lactateProd↓,1,   LDHB↑,1,   MAPK↓,1,   MAPK↑,1,   MCP1↑,2,   MDA↓,2,   MDA↑,1,   memory↑,8,   mitResp↓,1,   MMP↑,1,   MMP↝,1,   MMP∅,1,   MMP-10↓,1,   MMP1↓,1,   MMP2↑,1,   MMP9↓,2,   MMPs↑,1,   motorD↑,3,   mPGES-1↓,1,   MPT↑,1,   mTOR↓,2,   MyD88↓,1,   NAD↑,1,   necrosis↓,1,   neuroP↑,9,   NF-kB↓,3,   NGF↑,1,   NO↓,3,   NO↑,1,   NOTCH↑,1,   NRF2↑,3,   OS↑,1,   other?,1,   other↑,2,   other↝,7,   OXPHOS↓,2,   OXPHOS↑,1,   p38↑,2,   p‑p38↓,1,   p‑p65↓,1,   PDGF↑,1,   PDGFR-BB↑,1,   PFKL↑,2,   PFKM↑,2,   PFKP↑,1,   PGC-1α↑,1,   pH↑,1,   PKM2↑,2,   PPP↓,1,   ROMO1↑,1,   ROS↓,28,   ROS↑,7,   ROS∅,1,   mt-ROS↑,1,   selectivity↑,2,   SOD↑,7,   SOD1↑,4,   SOD2↑,3,   STAT3↓,1,   TAC↑,1,   p‑tau↓,1,   TCA↑,1,   TGF-β↑,2,   TGF-β1↑,1,   TIMP1↑,1,   TIMP2↑,1,   TLR4↓,1,   TNF-α↓,4,   TNF-α↑,1,   toxicity?,1,   toxicity∅,6,   TumCMig↑,1,   tumCV↑,1,   VEGF↑,3,   Wnt↑,1,   YAP/TEAD↑,1,   β-Amyloid↓,1,   β-catenin/ZEB1↑,2,  
Total Targets: 163

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
79 Magnetic Fields
19 Magnetic Field Rotating
3 immunotherapy
3 Silver-NanoParticles
2 Vitamin C (Ascorbic Acid)
1 Capsaicin
1 Radiotherapy/Radiation
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page