condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls
DNAdam↑,
ROS↑,
ChemoSen∅, Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab
Pyruv↓, levels of pyruvate, succinate, aspartate and adenosindiphosphate (ADP) were significantly downregulated after BEMER therapy whereas serine showed significant upregulation
ADP:ATP↓,
ROS↑, BEMER therapy increases ROS levels leading to radiosensitization via increased induction of DSBs

2244- MF,    Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer
- Review, Var, NA
RPM↑, WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis
Glycolysis∅, WEMF parallel to the magnetic field (does not enchance glycolysis)
ROS↑, WEMF can augment this effect by enhancing mitochondrial respiration, which increases ROS levels within cancer cells. This augmentation makes cancer cells more susceptible to treatment by promoting oxidative stress that can lead to apoptosis
ChemoSen↑, Chemotherapeutic agents, such as doxorubicin, primarily exert their effects by generating ROS to induce cell death. WEMF can augment this effect by enhancing mitochondrial respiration, which increases ROS levels
RadioS↑, Similarly, WEMF can enhance the efficacy of radiation therapy by increasing ROS production and sensitizing cancer cells to radiation-induced DNA damage
selectivity↑, primary advantage of WEMF is its non-invasive, non-ionizing nature, which minimizes collateral damage to healthy tissue.

3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, It is established that pulsed electromagnetic field (PEMF) therapy can enhance the effects of anti-cancer chemotherapeutic agents
tumCV↓, co-treatment with etoposide and PEMFs led to a decrease in viable cells compared with cells solely treated with etoposide.
cl‑PARP↑, PEMFs elevated the etoposide-induced PARP cleavage and caspase-7/9 activation and enhanced the etoposide-induced down-regulation of survivin and up-regulation of Bax.
Casp7↑,
Casp9↑,
survivin↓,
BAX↑,
DNAdam↑, PEMF also increased the etoposide-induced activation of DNA damage-related molecules
ROS↑, the reactive oxygen species (ROS) level was slightly elevated during etoposide treatment and significantly increased during co-treatment with etoposide and PEMF.
eff↓, Moreover, treatment with ROS scavenger restored the PEMF-induced decrease in cell viability in etoposide-treated MCF-7 cells

3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, Ding et al., 8 it was demonstrated that 24‐h exposure to 60 Hz, 5 mT ELF‐EMF could potentiate apoptosis induced by H2O2 in HL‐60 leukaemia cell lines.
H2O2↑,
ROS↑, One of the main mechanisms proposed for defining anticancer effects of ELF‐EMF is induction of apoptosis through upregulation of reactive oxygen species (ROS) which has also been confirmed by different experimental studies.
eff↑, intermittent 100 Hz, 0.7 mT EMF significantly enhanced rate of apoptosis in human hepatoma cell lines pretreated with low‐dose X‐ray radiation.
eff↑, 50 Hz, 45 ± 5 mT pulsed EMF, significantly potentiated rate of apoptosis induced by cyclophosphamide and colchicine
Ca+2↑, Over the past few years, lots of data have shown that ELF‐EMF exposure regulates intracellular Ca2+ level
MAPK↑, Mitogen‐activated protein kinase (MAPK) cascades are among the other important signalling cascades which are stimulated upon exposure to ELF‐EMF in several types of examined cells
*Catalase↑, ELF‐EMF exposure can upregulate expression of different antioxidant target genes including CAT, SOD1, SOD2, GPx1 and GPx4.
*SOD1↑,
*GPx1↑,
*GPx4↑,
*NRF2↑, Activation and upregulation of Nrf2 expression, the master redox‐sensing transcription factor may be the most prominent example in this regard which has been confirmed in a Huntington's disease‐like rat model.
TumAuto↑, Activation of autophagy, ER stress, heat‐shock response and sirtuin 3 expression are among the other identified cellular stress responses to ELF‐EMF exposure
ER Stress↑,
HSPs↑,
SIRT3↑,
ChemoSen↑, Contrarily, when chemotherapy and ELF‐EMF exposure are performed simultaneously, this increase in ROS levels potentiates the oxidative stress induced by chemotherapeutic agents
UPR↑, In consequence of ER stress, cells begin to initiate UPR to counteract stressful condition.
other↑, Since the only proven effects of ELF‐EMF exposure on cells are cellular adaptive responses, ROS overproduction and intracellular calcium overload
PI3K↓, figure 3
JNK↑,
p38↑,
eff↓, ontrarily, when cells are exposed to ELF‐EMF, a new source of ROS production is introduced in cells which can at least partially reverse anticancer effects observed with cell's treatment with melatonin.
*toxicity?, More importantly, ELF‐EMF exposure to normal cells in most cases has shown to be safe and un‐harmful.

501- MF,    Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, MCF10 cells were slightly benefitted by these same PEMF parameters ****
*toxicity↓, harmless to non-malignant cell types
ChemoSen↑, adjuvant treatment to more traditional chemo- and radiotherapies with the aim of reducing their dosage, mitigating any harmful secondary side effects and enhancing patient prognosis.
chemoP↑,
selectivity↑, killing of MCF7 cells : 3 mT peak-to-peak magnitude, at a pulse frequency of 20 Hz and duration of exposure of only 60 minutes per day. By stark contrast, this same pulsing paradigm (cytotoxic to MCF-7s) was innocuous to normal MCF-10 breast cells
DNAdam↑, Once again, 60 minutes of 3 mT PEMFs for three consecutive days gave the greatest DNA damage in MCF7 cancer cells.

506- MF,  doxoR,    Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells
- in-vitro, OS, LM8
TumCP↓,
p‑CHK1↓, reducing the increased expression of total IĸB and phosphorylated-CHK1 induced by doxorubicin
Ca+2↑, caused by PEMF alone
Casp3↓, PEMF stimulation significantly reduced the enhancement of caspase 3/7 activity by doxorubicin at 24 h
Casp7↓, PEMF stimulation significantly reduced the enhancement of caspase 3/7 activity by doxorubicin at 24 h
p‑BAD↓,
ChemoSen↑, Our results indicate that combination of PEMF and doxorubicin could be a novel chemotherapeutic strategy.

512- MF,    Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, FF95
TumCP↓,
*toxicity↓, PEMF application decreases the proliferation rate and viability of breast cancer cells while having the opposite effect on normal fibroblasts.
ChemoSen↑, ELF-PEMFs, as a pathology treatment approach, they have mainly been used as a complementary type of therapy, coupled with chemo-/radiotherapy,
RadioS↑,
selectivity↑, Collectively, these data indicate that PEMF irradiation exhibited not only anti-cancer properties but also beneficial effects for the normal cells.

497- MF,    In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells
- vitro+vivo, NA, MCF-7 - vitro+vivo, NA, A549
TumCG↓, growth inhibition (∼5%)
TumVol↓, 9% for PMF2
Casp3↑,
Casp7↑,
Apoptosis↑,
DNAdam↑,
TumCCA↑,
ChemoSen↑, PEMF synergistically enhances the potency of chemotherapy agents such as doxorubicin, 17 vincristine, 18 mitomycin C, 18 cisplatin, 18 and actinomycin.
EPR↑, PEMF can increase cell permeability. longer PEMF exposure may be required to increase cell membrane permeability.

529- MF,    Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives
- Review, GBM, NA
Ca+2↑, U-373MG 50 Hz, 3 mT 24 h Increased the intracellular Ca2+
ROS↑, BT115, U87, BT175 50–350 Hz, 1–58 mT 2–4 h Increased the ROS level and cell death
ChemoSen↑, A growing amount of evidence has validated that LF-MFs combined with chemotherapeutic drugs have a synergistic effect in the treatment of GBM
QoL↑, For example, researchers have discovered that LF-MFs can improve the quality of life of patients with recurrent GBM
OS↑, clinical trials have also validated the excellent therapeutic efficacy of LF-MFs in prolonging OS and improving quality of life in GBM patients


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 9

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↓,1,   Apoptosis↑,3,   p‑BAD↓,1,   BAX↑,1,   Ca+2↑,3,   Casp3↓,1,   Casp3↑,1,   Casp7↓,1,   Casp7↑,2,   Casp9↑,1,   chemoP↑,1,   ChemoSen↑,8,   ChemoSen∅,1,   p‑CHK1↓,1,   DNAdam↑,4,   eff↓,2,   eff↑,2,   EPR↑,1,   ER Stress↑,1,   Glycolysis∅,1,   H2O2↑,1,   HSPs↑,1,   JNK↑,1,   MAPK↑,1,   OS↑,1,   other↑,1,   p38↑,1,   cl‑PARP↑,1,   PI3K↓,1,   Pyruv↓,1,   QoL↑,1,   RadioS↑,3,   ROS↑,6,   RPM↑,1,   selectivity↑,3,   SIRT3↑,1,   survivin↓,1,   TumAuto↑,1,   TumCCA↑,1,   TumCG↓,1,   TumCP↓,2,   tumCV↓,1,   TumVol↓,1,   UPR↑,1,  
Total Targets: 44

Results for Effect on Normal Cells:
Catalase↑,1,   GPx1↑,1,   GPx4↑,1,   NRF2↑,1,   SOD1↑,1,   toxicity?,1,   toxicity↓,2,  
Total Targets: 7

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
9 Magnetic Fields
1 Radiotherapy/Radiation
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page