condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Akt, PKB-Protein kinase B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport.

Inhibitors:
-Curcumin: downregulate AKT phosphorylation and signaling.
-Resveratrol
-Quercetin: inhibit the PI3K/AKT pathway.
-Epigallocatechin Gallate (EGCG)
-Luteolin and Apigenin: inhibit AKT phosphorylation


Scientific Papers found: Click to Expand⟱
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, Capsaicin is an agonist for transient receptor potential cation channel subfamily V member 1 (TRPV1)
eff↑, It is noteworthy that capsaicin binding to the TRPV1 receptor may be increased using a static magnetic field (SMF), thus enhancing the anti-cancer effect of capsaicin on HepG2 (human hepatoblastoma cell line) cells through caspase-3 apoptosis
Akt↓, capsaicin can regulate autophagy by inhibiting the Akt/mTOR
mTOR↓,
p‑STAT3↑, Capsaicin can upregulate the activity of the signal transducer and activator of transcription 3 (p-STAT3)
MMP2↑, increase of the expression of MMP-2
ER Stress↑, capsaicin may induce apoptosis through endoplasmic reticulum (ER) stress
Ca+2↑, and the subsequent ER release of Ca2+
ROS↑, Capsaicin-induced ROS generation
selectivity↑, On the other hand, an excess of capsaicin is cytotoxic on HepG2 cells, and normal hepatocytes to a smaller extent, by collapse of the mitochondrial membrane potential with ROS formation
MMP↓,
eff↑, combination of capsaicin and sorafenib demonstrated significant anticarcinogenic properties on LM3 HCC cells, restricting tumor cell growth

2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, PEMF exposure increased cell proliferation and adhesion
*mTOR↑, PEMFs contribute to activation of the mTOR pathway via upregulation of the proteins AKT, MAPP kinase, and RRAGA, suggesting that activation of the mTOR pathway is required for PEMF-stimulated osteogenic differentiation.
*Akt↑,
*PKA↑, PEMFs increase the activity of certain kinases belonging to known intracellular signaling pathways, such as the protein kinase A (PKA) and the MAPK ERK1/2
*MAPK↑,
*ERK↑,
*BMP2↑, PEMFs stimulation also upregulates BMP2 expression in association with increased differentiation in mesenchymal stem cells (MSCs
*Diff↑,
*PKCδ↓, Decrease in PKC protein (involved on Adipogenesis)
*VEGF↑, Increase on VEGF (involved on angiogenesis)
*IL10↑, PEMF induced a significant increase of in vitro expression of IL-10 (that exerts anti-inflammatory activity)

3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, 50 Hz, 1 mT for 24/48/72 h SH-SY5Y (neuroblastoma Significantly increased ROS levels
*Ca+2↑, There is experimental proof that extremely low-frequency (ELF-MF) magnetic fields interact with Ca2+ channels, leading to increased Ca2+ efflux
*Inflam↓, PEMF stimulates the anti-inflammatory response of mesenchymal stem cells.
*Akt↓, nasopharyngeal carcinoma cell line. Potentially, these alterations were caused by inhibition of the Akt/mTOR signaling pathway
*mTOR↓,
selectivity↑, Ashdown and colleagues observed disruptions in the human lung cancer cell line after PMF (20 mT) exposure; in comparison, normal cells were insensitive to PMF
*memory↑, Ahmed and colleagues proved that PMF has an impact on the hippocampus, the brain region responsible for spatial orientation and memory acquisition.
*MMPs↑, In wound closure, epithelial cells, connective tissue cells, and immune cells, which promote collagen production, matrix metalloproteinase activity, growth factor release (e.g., VEGF, FGF, PDGF, TNF, HGF, and IL-1), and inflammatory environment pro
*VEGF↑,
*FGF↑,
*PDGF↑,
*TNF-α↑,
*HGF/c-Met↑,
*IL1↑,

496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, attenuated by ROS scavenger NAC
PI3K↓,
Akt↓,
GSK‐3β↑,
Apoptosis↑,
cl‑PARP↑, cleaved PARP-1
cl‑Casp3↑,
BAX↑,
Bcl-2↓,
CycB↓, Cyclin B1
TumCCA↑, failure of the transition from the G2 phase to M phase
p‑Akt↓,
p‑Akt↓,

486- MF,    mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
- in-vitro, Nor, HaCaT
*mTOR↑,
*PI3K↑, HaCaT cells exposed for 1h to 50Hz/1mT showed an increased percentage of cells in the S phase, through a significantly activation of the PI3K, JNK and ERK pathways
*Akt↑,
*p‑ERK↑,
*other↑, increases in the percentage of cells in the S phase and decrease in the percentage of cells in G0/G1 phase
*p‑JNK↑,
*p‑P70S6K↑,

194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓,
*BAX↓,
*Casp3↓,
*Bcl-xL↑,
*p‑Akt↑,
*MMP9↓, EMF significantly decreased levels of IL-1β and MMP9 in the peri-infarct area at 24 h and 3rd day of the experiment
*p‑ERK↑, ERK1/2
*HIF-1↓,
*ROS↓, n a similar experiment, ELF-MF (50 Hz/1 mT) increased cell viability and decreased intracellular ROS/RNS in mesenchymal stem cells submitted to OGD conditions and 3 h ELF-MF exposure
*VEGF↑,
*Ca+2↓,
*SOD↑,
*IL2↑,
*p38↑,
*HSP70/HSPA5↑,
*Apoptosis↓, PEMF decreased apoptosis
*ROS↓, Nevertheless, in the presence of ischemia, EMF decreased NO and ROS concentrations.
*NO↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   p‑Akt↓,2,   Apoptosis↑,1,   BAX↑,1,   Bcl-2↓,1,   Ca+2↑,1,   cl‑Casp3↑,1,   CycB↓,1,   eff↑,2,   ER Stress↑,1,   GSK‐3β↑,1,   MMP↓,1,   MMP2↑,1,   mTOR↓,1,   cl‑PARP↑,1,   PI3K↓,1,   ROS↑,3,   selectivity↑,2,   p‑STAT3↑,1,   TRPV1↑,1,   TumCCA↑,1,  
Total Targets: 21

Results for Effect on Normal Cells:
Akt↓,1,   Akt↑,2,   p‑Akt↑,1,   Apoptosis↓,1,   BAD↓,1,   BAX↓,1,   Bcl-xL↑,1,   BMP2↑,1,   Ca+2↓,1,   Ca+2↑,1,   Casp3↓,1,   Diff↑,1,   eff↑,1,   ERK↑,1,   p‑ERK↑,2,   FGF↑,1,   HGF/c-Met↑,1,   HIF-1↓,1,   HSP70/HSPA5↑,1,   IL1↑,1,   IL10↑,1,   IL2↑,1,   Inflam↓,1,   p‑JNK↑,1,   MAPK↑,1,   memory↑,1,   MMP9↓,1,   MMPs↑,1,   mTOR↓,1,   mTOR↑,2,   NO↓,1,   other↑,1,   p38↑,1,   p‑P70S6K↑,1,   PDGF↑,1,   PI3K↑,1,   PKA↑,1,   PKCδ↓,1,   ROS↓,2,   SOD↑,1,   TNF-α↑,1,   VEGF↑,3,  
Total Targets: 42

Scientific Paper Hit Count for: Akt, PKB-Protein kinase B
6 Magnetic Fields
1 Capsaicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:4  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page