condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


RadioS, RadioSensitizer: Click to Expand ⟱
Source:
Type:
A radiosensitizer is an agent that makes cancer cells more sensitive to the damaging effects of radiation therapy. By using a radiosensitizer, clinicians aim to enhance the effectiveness of radiation treatment by either increasing the damage incurred by tumor cells or by interfering with the cancer cells’ repair mechanisms. This can potentially allow for lower doses of radiation, reduced side effects, or improved treatment outcomes.
Pathways that help Radiosensitivity: downregulating HIF-1α, increase SIRT1, Txr

List of Natural Products with radiosensitizing properties:
-Curcumin:modulate NF-κB, STAT3 and has been shown in preclinical studies to enhance the effects of radiation by inhibiting cell survival pathways.
-Resveratrol:
-EGCG:
-Quercetin:
-Genistein:
-Parthenolide:

How radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including:
-gold nanoparticles (GNPs),
-gold triethylphosphine cyanide ([Au(SCN) (PEt3)]),
-auranofin, ceria nanoparticles (CONPs),
-curcumin and its derivatives,
-piperlongamide,
-indolequinone derivatives,
-micheliolide,
-motexafin gadolinium, and
-ethane selenide selenidazole derivatives (SeDs)


Scientific Papers found: Click to Expand⟱
2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls
DNAdam↑,
ROS↑,
ChemoSen∅, Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab
Pyruv↓, levels of pyruvate, succinate, aspartate and adenosindiphosphate (ADP) were significantly downregulated after BEMER therapy whereas serine showed significant upregulation
ADP:ATP↓,
ROS↑, BEMER therapy increases ROS levels leading to radiosensitization via increased induction of DSBs

2244- MF,    Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer
- Review, Var, NA
RPM↑, WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis
Glycolysis∅, WEMF parallel to the magnetic field (does not enchance glycolysis)
ROS↑, WEMF can augment this effect by enhancing mitochondrial respiration, which increases ROS levels within cancer cells. This augmentation makes cancer cells more susceptible to treatment by promoting oxidative stress that can lead to apoptosis
ChemoSen↑, Chemotherapeutic agents, such as doxorubicin, primarily exert their effects by generating ROS to induce cell death. WEMF can augment this effect by enhancing mitochondrial respiration, which increases ROS levels
RadioS↑, Similarly, WEMF can enhance the efficacy of radiation therapy by increasing ROS production and sensitizing cancer cells to radiation-induced DNA damage
selectivity↑, primary advantage of WEMF is its non-invasive, non-ionizing nature, which minimizes collateral damage to healthy tissue.

3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, When cells are subjected to external mechanical stimulation, voltage-gated ion channels in the cell membrane open and intracellular calcium ion concentration rises
*VEGF↑, BMSCs EMF combined with VEGF promote osteogenesis and angiogenesis
*angioG↑,
Ca+2↑, 1 Hz/100 mT MC4-L2 breast cancer cells EMF lead to calcium ion overload and ROS increased, resulting in necroptosis
ROS↑,
Necroptosis↑,
TumCCA↑, 50 Hz/4.5 mT 786-O cells ELF-EMF induce G0/G1 arrest and apoptosis in cells lines
Apoptosis↑,
*ATP↑, causing the ATP or ADP increases, and the purinergic signal can upregulate the expression of P2Y1 receptors
*FAK↑, Our research team [53] found that ELE-EMF can induce calcium oscillations in bone marrow stem cells, up-regulated calcium ion activates FAK pathway, cytoskeleton enhancement, and migration ability of stem cells in vitro is enhanced.
*Wnt↑, ability of EMF to activate the Wnt10b/β-catenin signaling pathway to promote osteogenic differentiation of cells depends on the functional integrity of primary cilia in osteoblasts.
*β-catenin/ZEB1↑,
*ROS↑, we hypothesize that the electromagnetic field-mediated calcium ion oscillations, which causes a small amount of ROS production in mitochondria, regulates the chondrogenic differentiation of cells, but further studies are needed
p38↑, RF-EMF was able to suppress tumor stem cells by activating the CAMKII/p38 MAPK signaling pathway after inducing calcium ion oscillation and by inhibiting the β-catenin/HMGA2 signaling pathway
MAPK↑,
β-catenin/ZEB1↓,
CSCs↓, Interestingly, the effect of electromagnetic fields is not limited to tumor stem cells, but also inhibits the proliferation and development of tumor cells
TumCP↓,
ROS↑, breast cancer cell lines exposed to ELE-EMF for 24 h showed a significant increase in intracellular ROS expression and an increased sensitivity to further radiotherapy
RadioS↑,
Ca+2↑, after exposure to higher intensity EMF radiation, showed a significant increase in intracellular calcium ion and reactive oxygen species, which eventually led to necroptosis
eff↓, while this programmed necrosis of tumor cells was able to be antagonized by the calcium blocker verapamil or the free radical scavenger n -acetylcysteine
NO↑, EMF can regulate multiple ions in cells, and calcium ion play a key role [92, 130], calcium ion acts as a second messenger that can activate downstream molecules such as NO, ROS

512- MF,    Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, FF95
TumCP↓,
*toxicity↓, PEMF application decreases the proliferation rate and viability of breast cancer cells while having the opposite effect on normal fibroblasts.
ChemoSen↑, ELF-PEMFs, as a pathology treatment approach, they have mainly been used as a complementary type of therapy, coupled with chemo-/radiotherapy,
RadioS↑,
selectivity↑, Collectively, these data indicate that PEMF irradiation exhibited not only anti-cancer properties but also beneficial effects for the normal cells.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↓,1,   Apoptosis↑,1,   Ca+2↑,2,   ChemoSen↑,2,   ChemoSen∅,1,   CSCs↓,1,   DNAdam↑,1,   eff↓,1,   Glycolysis∅,1,   MAPK↑,1,   Necroptosis↑,1,   NO↑,1,   p38↑,1,   Pyruv↓,1,   RadioS↑,4,   ROS↑,5,   RPM↑,1,   selectivity↑,2,   TumCCA↑,1,   TumCP↓,2,   β-catenin/ZEB1↓,1,  
Total Targets: 21

Results for Effect on Normal Cells:
angioG↑,1,   ATP↑,1,   Ca+2↑,1,   FAK↑,1,   ROS↑,1,   toxicity↓,1,   VEGF↑,1,   Wnt↑,1,   β-catenin/ZEB1↑,1,  
Total Targets: 9

Scientific Paper Hit Count for: RadioS, RadioSensitizer
4 Magnetic Fields
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:1107  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page