condition found
Features: Therapy |
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range. The main pathways affected are: Calcium Signaling: -influence the activity of voltage-gated calcium channels. Oxidative Stress and Reactive Oxygen Species (ROS) Pathways Heat Shock Proteins (HSPs) and Cellular Stress Responses Cell Proliferation and Growth Signaling: MAPK/ERK pathway. Gene Expression and Epigenetic Modifications: NF-κB Angiogenesis Pathways: VEGF (improving VEGF for normal cells) PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models Pathways: - most reports have ROS production increasing in cancer cells , while decreasing in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells), - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
A radiosensitizer is an agent that makes cancer cells more sensitive to the damaging effects of radiation therapy. By using a radiosensitizer, clinicians aim to enhance the effectiveness of radiation treatment by either increasing the damage incurred by tumor cells or by interfering with the cancer cells’ repair mechanisms. This can potentially allow for lower doses of radiation, reduced side effects, or improved treatment outcomes. Pathways that help Radiosensitivity: downregulating HIF-1α, increase SIRT1, Txr List of Natural Products with radiosensitizing properties: -Curcumin:modulate NF-κB, STAT3 and has been shown in preclinical studies to enhance the effects of radiation by inhibiting cell survival pathways. -Resveratrol: -EGCG: -Quercetin: -Genistein: -Parthenolide: How radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including: -gold nanoparticles (GNPs), -gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), -auranofin, ceria nanoparticles (CONPs), -curcumin and its derivatives, -piperlongamide, -indolequinone derivatives, -micheliolide, -motexafin gadolinium, and -ethane selenide selenidazole derivatives (SeDs) |
2251- | MF,  | Rad,  |   | BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage |
- | in-vitro, | Lung, | A549 | - | in-vitro, | HNSCC, | UTSCC15 | - | in-vitro, | CRC, | DLD1 | - | in-vitro, | PC, | MIA PaCa-2 |
2244- | MF,  |   | Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer |
- | Review, | Var, | NA |
3477- | MF,  |   | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
- | Review, | NA, | NA |
512- | MF,  |   | Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | FF95 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:172 Target#:1107 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid