Database Query Results : Magnetic Fields, , TumMeta

MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumMeta, Cancer Metastasis: Click to Expand ⟱
Source:
Type:
Cancer metastasis is the process by which cancer cells spread from the original (primary) tumor to other parts of the body, forming new (secondary) tumors. This occurs when cancer cells invade surrounding tissues, enter the bloodstream or lymphatic system, and travel to distant organs or tissues.


Scientific Papers found: Click to Expand⟱
517- MF,  Rad,    Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis
- in-vivo, NA, MDA-MB-231
TumMeta↓, IR or TEMF had significantly fewer lung metastatic sites
TumCG↓,

3464- MF,    Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology
- Review, Var, NA
AntiTum↑, frequency below 300 Hz) exert anti-tumor function, independent of thermal effects
TumCG↓, Magnetic fields (MFs) could inhibit cell growth and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation; regulate the immune system; and suppress angiogenesis and metastasis via various signaling pathways
TumCCA↑,
Apoptosis↑,
TumAuto↑,
Diff↑,
angioG↓,
TumMeta↓,
EPR↑, MFs not only promote the absorption of chemotherapy drugs by producing small holes on the surface of cell membrane
ChemoSen↑,
ROS↑, MF treatment has been shown to promote the generation of ROS in many studies (31, 71, 72), with exposure within a 60 Hz sinusoidal MF for 48 h in induced human prostate cancer for DU145, PC3, and LNCaP apoptoses
DNAdam↑, Repetitive exposure to LF-MFs induced DNA damage and accumulation of DSBs and triggered apoptosis in Hela and MCF7 cell lines
P53↑, PMFs could trigger apoptosis cell death by upregulating the p53 level and through the mitochondrial-dependent pathway
Akt↓, LF-MFs (300 mT, 6 Hz, 24 h) also induced apoptosis by suppressing protein kinase B (Akt) signaling, activating p38 mitogen-activated protein kinase (MAPK) signaling, and caspase-9, which is the executor of the mitochondrial apoptosis pathway
MAPK↑,
Casp9↑,
VEGFR2↓, reducing the expression and activation levels of VEGFR2
P-gp↓, A combination with the SMF (8.8 m T, 12 h) decreased the expression of P-glycoprotein (P-gp) in K562 cancer cells, while adriamycin itself induced an increase

3500- MF,    Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress
- in-vitro, Ovarian, SKOV3
ROS↑, SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells.
CSCs↓,
CD44↓, xpressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc).
SOX2↓,
cMyc↓,
TumMeta↓, High Levels of Cellular ROS Inhibit Ovarian Cancer Cell Migration and Invasion
TumCI↓,
TumCMig↓, Moderate SMFs Increase Ovarian Cancer Cell ROS Levels and Inhibit Cell Migration
CD133↓, stemness-related genes were significantly downregulated by SMF treatment, including Sox2, Nanog, C-myc, CD44, and CD133
Nanog↓,

198- MFrot,  MF,    Biological effects of rotating magnetic field: A review from 1969 to 2021
- Review, Var, NA
AntiCan↑, RMF can inhibit the growth of various types of cancer cells in vitro and in vivo and improve clinical symptoms of patients with advanced cancer.
breath↑, 0.4T, 7Hz RMF was applied to treat 13 advanced non-small cell lung cancer patients (2 h/day, 5 days per week, for 6–10 weeks)
Pain↓, Decreased pleural effusion (2 patients, 15.4%), remission of shortness of breath (5 patients, 38.5%), relief of cancer pain (5 patients, 38.5%), increased appetite (6 patients, 46.2%), improved physical strength (9 patients, 69.2%), regular bowel mov
Appetite↑,
Strength↑,
BowelM↑,
TumMeta↓, The same RMF (2 h/day, for 43 days) can also suppress the growth and metastasis of B16-F10 cells in vivo
TumCCA↑, The up-regulated transcription of miR-34a induced cell proliferation inhibition, cell cycle arrest, and cell senescence by targeting E2F1/E2F3, two members of E2F family which are major regulators of the cell cycle,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,1,   AntiCan↑,1,   AntiTum↑,1,   Apoptosis↑,1,   Appetite↑,1,   BowelM↑,1,   breath↑,1,   Casp9↑,1,   CD133↓,1,   CD44↓,1,   ChemoSen↑,1,   cMyc↓,1,   CSCs↓,1,   Diff↑,1,   DNAdam↑,1,   EPR↑,1,   MAPK↑,1,   Nanog↓,1,   P-gp↓,1,   P53↑,1,   Pain↓,1,   ROS↑,2,   SOX2↓,1,   Strength↑,1,   TumAuto↑,1,   TumCCA↑,2,   TumCG↓,2,   TumCI↓,1,   TumCMig↓,1,   TumMeta↓,4,   VEGFR2↓,1,  
Total Targets: 32

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TumMeta, Cancer Metastasis
4 Magnetic Fields
1 Radiotherapy/Radiation
1 Magnetic Field Rotating
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:604  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page